brain rhythm
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Hengjin Ke ◽  
Cang Cai ◽  
Fengqin Wang ◽  
Fang Hu ◽  
Jiawei Tang ◽  
...  

Online end-to-end electroencephalogram (EEG) classification with high performance can assess the brain status of patients with Major Depression Disabled (MDD) and track their development status in time with minimizing the risk of falling into danger and suicide. However, it remains a grand research challenge due to (1) the embedded intensive noises and the intrinsic non-stationarity determined by the evolution of brain states, (2) the lack of effective decoupling of the complex relationship between neural network and brain state during the attack of brain diseases. This study designs a Frequency Channel-based convolutional neural network (CNN), namely FCCNN, to accurately and quickly identify depression, which fuses the brain rhythm to the attention mechanism of the classifier with aiming at focusing the most important parts of data and improving the classification performance. Furthermore, to understand the complexity of the classifier, this study proposes a calculation method of information entropy based on the affinity propagation (AP) clustering partition to measure the complexity of the classifier acting on each channel or brain region. We perform experiments on depression evaluation to identify healthy and MDD. Results report that the proposed solution can identify MDD with an accuracy of 99±0.08%, the sensitivity of 99.07±0.05%, and specificity of 98.90±0.14%. Furthermore, the experiments on the quantitative interpretation of FCCNN illustrate significant differences between the frontal, left, and right temporal lobes of depression patients and the healthy control group.


2021 ◽  
Author(s):  
Scott J Mongold ◽  
Harri Piitulainen ◽  
Thomas Legrand ◽  
Marc Vander Ghinst ◽  
Gilles Naeije ◽  
...  

As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the ~20-Hz sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ~40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.


2021 ◽  
Author(s):  
Jia Wen Li ◽  
Shovan Barma ◽  
Sio Hang Pun ◽  
Fei Chen ◽  
Cheng Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabah M. Shadli ◽  
Lynne C. Ando ◽  
Julia McIntosh ◽  
Veema Lodhia ◽  
Bruce R. Russell ◽  
...  

AbstractPsychiatric diagnoses currently rely on a patient’s presenting symptoms or signs, lacking much-needed theory-based biomarkers. Our neuropsychological theory of anxiety, recently supported by human imaging, is founded on a longstanding, reliable, rodent ‘theta’ brain rhythm model of human clinical anxiolytic drug action. We have now developed a human scalp EEG homolog—goal-conflict-specific rhythmicity (GCSR), i.e., EEG rhythmicity specific to a balanced conflict between goals (e.g., approach-avoidance). Critically, GCSR is consistently reduced by different classes of anxiolytic drug and correlates with clinically-relevant trait anxiety scores (STAI-T). Here we show elevated GCSR in student volunteers divided, after testing, on their STAI-T scores into low, medium, and high (typical of clinical anxiety) groups. We then tested anxiety disorder patients (meeting diagnostic criteria) and similar controls recruited separately from the community. The patient group had higher average GCSR than their controls—with a mixture of high and low GCSR that varied with, but cut across, conventional disorder diagnosis. Consequently, GCSR scores should provide the first theoretically-based biomarker that could help diagnose, and so redefine, a psychiatric disorder.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Csaba Horváth ◽  
Lili Fanni Tóth ◽  
István Ulbert ◽  
Richárd Fiáth

AbstractPublicly available neural recordings obtained with high spatial resolution are scarce. Here, we present an electrophysiological dataset recorded from the neocortex of twenty rats anesthetized with ketamine/xylazine. The wideband, spontaneous recordings were acquired with a single-shank silicon-based probe having 128 densely-packed recording sites arranged in a 32 × 4 array. The dataset contains the activity of a total of 7126 sorted single units extracted from all layers of the cortex. Here, we share raw neural recordings, as well as spike times, extracellular spike waveforms and several properties of units packaged in a standardized electrophysiological data format. For technical validation of our dataset, we provide the distributions of derived single unit properties along with various spike sorting quality metrics. This large collection of in vivo data enables the investigation of the high-resolution electrical footprint of cortical neurons which in turn may aid their electrophysiology-based classification. Furthermore, the dataset might be used to study the laminar-specific neuronal activity during slow oscillation, a brain rhythm strongly involved in neural mechanisms underlying memory consolidation and sleep.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 900
Author(s):  
Hao Cheng ◽  
Manling Ge ◽  
Abdelkader Nasreddine Belkacem ◽  
Xiaoxuan Fu ◽  
Chong Xie ◽  
...  

Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, a simulation was designed based on the principle of electroencephalogram (EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction (which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the power above average (significant power value, SP value) and its space (SP area) of low-frequency oscillatory FPs were employed to respectively evaluate the strength and the space of the influence. The computation was conducted using the finite element method (FEM) and Hilbert transform. The finding was that either the SP value or the SP area could be reduced or extended, depending on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium, suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a rhythm generator conducting in a different direction.


2021 ◽  
Author(s):  
Nikolaos Karalis ◽  
Anton Sirota

Abstract Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. During sleep and offline states, synchronous reactivation across these regions underlies the consolidation of memories. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from seven cortical and subcortical brain regions in quiescent and sleeping mice, we identified a novel global mechanism, termed respiratory corollary discharge, that co-modulates neural activity across these circuits. Analysis of inter-regional population activity and optogenetic perturbations revealed that breathing rhythm couples hippocampal sharp-wave ripples and cortical DOWN/UP state transitions by jointly modulating excitability in these circuits. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit, supporting the segregation and integration of information flow across neuronal networks during offline states.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
David Achanccaray ◽  
Shin-Ichi Izumi ◽  
Mitsuhiro Hayashibe

In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last two decades. Stroke can also cause paralysis. Of late, brain-computer interfaces (BCIs) have been garnering attention in the rehabilitation field as assistive technology. A BCI for the motor rehabilitation of patients with paralysis promotes neural plasticity, when subjects perform motor imagery (MI). Feedback, such as visual and proprioceptive, influences brain rhythm modulation to contribute to MI learning and motor function restoration. Also, virtual reality (VR) can provide powerful graphical options to enhance feedback visualization. This work aimed to improve immersive VR-BCI based on hand MI, using visual-electrotactile stimulation feedback instead of visual feedback. The MI tasks include grasping, flexion/extension, and their random combination. Moreover, the subjects answered a system perception questionnaire after the experiments. The proposed system was evaluated with twenty able-bodied subjects. Visual-electrotactile feedback improved the mean classification accuracy for the grasping (93.00%  ±  3.50%) and flexion/extension (95.00%  ±  5.27%) MI tasks. Additionally, the subjects achieved an acceptable mean classification accuracy (maximum of 86.5%  ±  5.80%) for the random MI task, which required more concentration. The proprioceptive feedback maintained lower mean power spectral density in all channels and higher attention levels than those of visual feedback during the test trials for the grasping and flexion/extension MI tasks. Also, this feedback generated greater relative power in the μ -band for the premotor cortex, which indicated better MI preparation. Thus, electrotactile stimulation along with visual feedback enhanced the immersive VR-BCI classification accuracy by 5.5% and 4.5% for the grasping and flexion/extension MI tasks, respectively, retained the subject’s attention, and eased MI better than visual feedback alone.


Sign in / Sign up

Export Citation Format

Share Document