scholarly journals Color signals through dorsal and ventral visual pathways

2013 ◽  
Vol 31 (2) ◽  
pp. 197-209 ◽  
Author(s):  
BEVIL R. CONWAY

AbstractExplanations for color phenomena are often sought in the retina, lateral geniculate nucleus, and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as the middle temporal (MT) motion area, not thought to play a major role in color perception. Here, we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex) and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, whereas those in noncolor-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception.

2018 ◽  
Vol 30 (12) ◽  
pp. 1757-1772 ◽  
Author(s):  
Pedro Pinheiro-Chagas ◽  
Amy Daitch ◽  
Josef Parvizi ◽  
Stanislas Dehaene

Elementary arithmetic requires a complex interplay between several brain regions. The classical view, arising from fMRI, is that the intraparietal sulcus (IPS) and the superior parietal lobe (SPL) are the main hubs for arithmetic calculations. However, recent studies using intracranial electroencephalography have discovered a specific site, within the posterior inferior temporal cortex (pITG), that activates during visual perception of numerals, with widespread adjacent responses when numerals are used in calculation. Here, we reexamined the contribution of the IPS, SPL, and pITG to arithmetic by recording intracranial electroencephalography signals while participants solved addition problems. Behavioral results showed a classical problem size effect: RTs increased with the size of the operands. We then examined how high-frequency broadband (HFB) activity is modulated by problem size. As expected from previous fMRI findings, we showed that the total HFB activity in IPS and SPL sites increased with problem size. More surprisingly, pITG sites showed an initial burst of HFB activity that decreased as the operands got larger, yet with a constant integral over the whole trial, thus making these signals invisible to slow fMRI. Although parietal sites appear to have a more sustained function in arithmetic computations, the pITG may have a role of early identification of the problem difficulty, beyond merely digit recognition. Our results ask for a reevaluation of the current models of numerical cognition and reveal that the ventral temporal cortex contains regions specifically engaged in mathematical processing.


2011 ◽  
Vol 23 (11) ◽  
pp. 3355-3365 ◽  
Author(s):  
Jason A. Cromer ◽  
Jefferson E. Roy ◽  
Timothy J. Buschman ◽  
Earl K. Miller

Previous work has shown that neurons in the PFC show selectivity for learned categorical groupings. In contrast, brain regions lower in the visual hierarchy, such as inferior temporal cortex, do not seem to favor category information over information about physical appearance. However, the role of premotor cortex (PMC) in categorization has not been studied, despite evidence that PMC is strongly engaged by well-learned tasks and reflects learned rules. Here, we directly compare PFC neurons with PMC neurons during visual categorization. Unlike PFC neurons, relatively few PMC neurons distinguished between categories of visual images during a delayed match-to-category task. However, despite the lack of category information in the PMC, more than half of the neurons in both PFC and PMC reflected whether the category of a test image did or did not match the category of a sample image (i.e., had match information). Thus, PFC neurons represented all variables required to solve the cognitive problem, whereas PMC neurons instead represented only the final decision variable that drove the appropriate motor action required to obtain a reward. This dichotomy fits well with PFC's hypothesized role in learning arbitrary information and directing behavior as well as the PMC's role in motor planning.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaoxuan Jia ◽  
Ha Hong ◽  
Jim DiCarlo

Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.


2021 ◽  
Author(s):  
Sophie M Hardy ◽  
Ole Jensen ◽  
Linda Wheeldon ◽  
Ali Mazaheri ◽  
Katrien Segaert

Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography (MEG), we investigated the neural mechanisms involved in binding of language at the level of syntax, in a task in which contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and wordlists that did not require binding (two pseudo-verbs; "cugged grushes"). Relative to the no binding wordlist condition, we found that syntactic binding in a minimal sentence structure was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized brain regions. First, in the sentence condition, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05s to 0.1s), which we suggest reflects an expectation of binding to occur. Second, following the presentation of the target word (around 0.15s to 0.25s), during syntactic binding we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex. We suggest that this results from alpha-driven cortical disinhibition serving to increase information transfer between these two brain regions and strengthen the syntax composition neural network. Together, our findings highlight that successful syntax composition is underscored by the rapid spatial-temporal activation and coordination of language-relevant brain regions, and that alpha band oscillations are critically important in controlling the allocation and transfer of the brain's resources during syntax composition.


2020 ◽  
Vol 31 (1) ◽  
pp. 603-619 ◽  
Author(s):  
Mona Rosenke ◽  
Rick van Hoof ◽  
Job van den Hurk ◽  
Kalanit Grill-Spector ◽  
Rainer Goebel

Abstract Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g., blind people, infants) in which functional localizers cannot be run.


1995 ◽  
Vol 348 (1325) ◽  
pp. 265-280 ◽  

A large amount of data is now available about the pattern of connections between brain regions. Computational methods are increasingly relevant for uncovering structure in such datasets. There has been recent interest in the use of non-metric multidimensional scaling (nmds) for such analysis, nmds produces a spatial representation of the ‘dissimilarities’ between a number of entities. Normally, it is applied to data matrices containing a large number of levels of dissimilarity, whereas for brain connectivity data there is a very small number. We address the suitability of nmds for this case. Systematic numerical studies are presented to evaluate the ability of this method to reconstruct known geometrical configurations from dissimilarity data possessing few levels. In this case there is a strong bias for nmds to produce annular configurations, whether or not such structure exists in the original data. For the case of a connectivity dataset derived from the primate cortical visual system, we demonstrate that great caution is needed in interpreting the resulting configuration. Application of an independent method that we developed also strongly suggests that the visual system nmds configuration is affected by an annular bias. We question the strength of support that an nmds analysis of the visual system data provides for the two streams view of visual processing.


2020 ◽  
Vol 30 (10) ◽  
pp. 5604-5615
Author(s):  
Chet C Sherwood ◽  
Sarah B Miller ◽  
Molly Karl ◽  
Cheryl D Stimpson ◽  
Kimberley A Phillips ◽  
...  

Abstract Synapses are involved in the communication of information from one neuron to another. However, a systematic analysis of synapse density in the neocortex from a diversity of species is lacking, limiting what can be understood about the evolution of this fundamental aspect of brain structure. To address this, we quantified synapse density in supragranular layers II–III and infragranular layers V–VI from primary visual cortex and inferior temporal cortex in a sample of 25 species of primates, including humans. We found that synapse densities were relatively constant across these levels of the cortical visual processing hierarchy and did not significantly differ with brain mass, varying by only 1.9-fold across species. We also found that neuron densities decreased in relation to brain enlargement. Consequently, these data show that the number of synapses per neuron significantly rises as a function of brain expansion in these neocortical areas of primates. Humans displayed the highest number of synapses per neuron, but these values were generally within expectations based on brain size. The metabolic and biophysical constraints that regulate uniformity of synapse density, therefore, likely underlie a key principle of neuronal connectivity scaling in primate neocortical evolution.


i-Perception ◽  
10.1068/if638 ◽  
2012 ◽  
Vol 3 (9) ◽  
pp. 638-638
Author(s):  
Akiko Nishio ◽  
Naokazu Goda ◽  
Hidehiko Komatsu

2017 ◽  
Vol 114 (22) ◽  
pp. E4501-E4510 ◽  
Author(s):  
Job van den Hurk ◽  
Marc Van Baelen ◽  
Hans P. Op de Beeck

To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience.


Sign in / Sign up

Export Citation Format

Share Document