scholarly journals Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution

2016 ◽  
Vol 33 ◽  
Author(s):  
AUSTIN C. STARNES ◽  
CARRIE HUISINGH ◽  
GERALD MCGWIN ◽  
KENNETH R. SLOAN ◽  
ZSOLT ABLONCZY ◽  
...  

AbstractBackground: The human retinal pigment epithelium (RPE) is reportedly 3% bi-nucleated. The importance to human vision of multi-nucleated (MN)-RPE cells could be clarified with more data about their distribution in central retina. Methods: Nineteen human RPE-flatmounts (9 ≤ 51 years, 10 > 80 years) were imaged at 12 locations: 3 eccentricities (fovea, perifovea, near periphery) in 4 quadrants (superior, inferior, temporal, nasal). Image stacks of lipofuscin-attributable autofluorescence and phalloidin labeled F-actin cytoskeleton were obtained using a confocal fluorescence microscope. Nuclei were devoid of autofluorescence and were marked using morphometric software. Cell areas were approximated by Voronoi regions. Mean number of nuclei per cell among eccentricity/quadrant groups and by age were compared using Poisson and binominal regression models. Results: A total of 11,403 RPE cells at 200 locations were analyzed: 94.66% mono-, 5.31% bi-, 0.02% tri-nucleate, and 0.01% with 5 nuclei. Age had no effect on number of nuclei. There were significant regional differences: highest frequencies of MN-cells were found at the perifovea (9.9%) and near periphery (6.8%). The fovea lacked MN-cells almost entirely. The nasal quadrant had significantly more MN-cells compared to other quadrants, at all eccentricities. Conclusion: This study demonstrates MN-RPE cells in human macula. MN-cells may arise due to endoreplication, cell fusion, or incomplete cell division. The topography of MN-RPE cells follows the topography of photoreceptors; with near-absence at the fovea (cones only) and high frequency at perifovea (highest rod density). This distribution might reflect specific requirements of retinal metabolism or other mechanisms addressable in further studies.

1995 ◽  
Vol 12 (5) ◽  
pp. 1001-1005 ◽  
Author(s):  
Heather Dawes ◽  
Gail Mandel ◽  
Gary Matthews

AbstractRecent electrophysiological experiments have shown that retinal pigment epithelium (RPE) cells begin to produce neuronal-type voltage-dependent sodium currents when placed in dissociated cell culture. In this study, the sodium channel types induced in cultured rat RPE cells were identified. Sodium channel mRNAs encoding two distinct alpha subunits were detected in the cultured RPE cells, brain type II/IIA, and a novel rat mRNA which we have termed RET1. These two sodium channel types may correspond to the TTX-sensitive and TTX-insensitive components of sodium current reported previously in cultured rat RPE cells.


2021 ◽  
Vol 22 (21) ◽  
pp. 11402
Author(s):  
Daniela F. Santos ◽  
Mariana Pais ◽  
Cláudia N. Santos ◽  
Gabriela A. Silva

(Poly)phenol-derived metabolites are small molecules resulting from (poly)phenol metabolization after ingestion that can be found in circulation. In the last decade, studies on the impact of (poly)phenol properties in health and cellular metabolism accumulated evidence that (poly)phenols are beneficial against human diseases. Diabetic retinopathy (DR) is characterized by inflammation and neovascularization and targeting these is of therapeutic interest. We aimed to study the effect of pyrogallol-O-sulfate (Pyr-s) metabolite in the expression of proteins involved in retinal glial activation, neovascularization, and glucose transport. The expression of PEDF, VEGF, and GLUT-1 were analyzed upon pyrogallol-O-sulfate treatment in RPE cells under high glucose and hypoxia. To test its effect on a diabetic mouse model, Ins2Akita mice were subjected to a single intraocular injection of the metabolite and the expression of PEDF, VEGF, GLUT-1, Iba1, or GFAP measured in the neural retina and/or retinal pigment epithelium (RPE), two weeks after treatment. We observed a significant decrease in the expression of pro-angiogenic VEGF in RPE cells. Moreover, pyrogallol-O-sulfate significantly decreased the expression of microglial marker Iba1 in the diabetic retina at different stages of disease progression. These results highlight the potential pyrogallol-O-sulfate metabolite as a preventive approach towards DR progression, targeting molecules involved in both inflammation and neovascularization.


1988 ◽  
Vol 91 (2) ◽  
pp. 303-312
Author(s):  
N.M. McKechnie ◽  
M. Boulton ◽  
H.L. Robey ◽  
F.J. Savage ◽  
I. Grierson

The cytoskeletal elements of normal (in situ) and cultured human retinal pigment epithelium (RPE) were studied by a variety of immunocytochemical techniques. Primary antibodies to vimentin and cytokeratins were used. Positive immunoreactivity for vimentin was obtained with in situ and cultured material. The pattern of reactivity obtained with antisera and monoclonals to cytokeratins was more complex. Cytokeratin immunoreactivity could be demonstrated in situ and in cultured cells. The pattern of cytokeratin expression was similar to that of simple or glandular epithelia. A monoclonal antibody that specifically recognizes cytokeratin 18 identified a population of cultured RPE cells that had particularly well-defined filamentous networks within their cytoplasm. Freshly isolated RPE was cytokeratin 18 negative by immunofluorescence, but upon culture cytokeratin 18 positive cells were identifiable. Cytokeratin 18 positive cells were identified in all RPE cultures (other than early primaries), regardless of passage number, age or sex of the donor. In post-confluent cultures cytokeratin 18 cells were identified growing over cytokeratin 18 negative cells, suggesting an association of cytokeratin 18 immunoreactivity with cell proliferation. Immunofluorescence studies of retinal scar tissue from two individuals revealed the presence of numerous cytokeratin 18 positive cells. These findings indicate that RPE cells can be identified by their cytokeratin immunoreactivity and that the overt expression of cytokeratin 18 may be associated with proliferation of human RPE both in vitro and in vivo.


2016 ◽  
Vol 57 (14) ◽  
pp. 5945 ◽  
Author(s):  
Takahiro Yamawaki ◽  
Eiko Ito ◽  
Atsushi Mukai ◽  
Morio Ueno ◽  
Jun Yamada ◽  
...  

2009 ◽  
Vol 247 (5) ◽  
pp. 633-639 ◽  
Author(s):  
Peng Zhang ◽  
Xing Zhang ◽  
Xiaofeng Hao ◽  
Yusheng Wang ◽  
Yannian Hui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document