Analysis of two types of cone bipolar cells in the retina of a New World monkey, the marmoset, Callithrix jacchus

1999 ◽  
Vol 16 (4) ◽  
pp. 707-719 ◽  
Author(s):  
XUEGANG LUO ◽  
KRISHNA K. GHOSH ◽  
PAUL R. MARTIN ◽  
ULRIKE GRÜNERT

Two types of cone bipolar cells, the blue cone bipolar cell and the diffuse bipolar cell (DB3), were labelled immunohistochemically and investigated in the retina of a New World monkey, the marmoset. Blue cone bipolar cells were labelled with an antiserum against cholecystokinin. Short-wavelength-sensitive (SWS) cones were labelled with an antiserum against the SWS cone opsin. The DB3 cells were labelled with antibodies to calbindin. Blue cone bipolar cells in marmoset do not form a regular mosaic but instead follow the random distribution of the SWS cones. Nevertheless, the SWS cone to blue cone bipolar cell connectivity in marmoset is very similar to that previously described for macaque. In contrast to the blue cone bipolar cells, the DB3 cells form a regular mosaic. The synaptic connectivity of DB3 cells in the inner plexiform layer was analyzed. They make output synapses onto ganglion cells and amacrine cells, and gap junctions with each other. Our results provide further evidence for the existence of parallel bipolar cell pathways in the primate retina and support the view that the retinae of Old World and New World primates have common neuronal connectivity. The random distribution of SWS cones and blue cone bipolar cells is an exception to the general rule of a regular mosaic distribution of cell populations in the retina.

2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


2002 ◽  
Vol 19 (5) ◽  
pp. 549-562 ◽  
Author(s):  
BOZENA FYK-KOLODZIEJ ◽  
WENHUI CAI ◽  
ROBERTA G. POURCHO

Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCα was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCβI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCβII was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCε and PKCζ was found in rod bipolar cells; PKCε was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCζ was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCβII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCβII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.


2019 ◽  
Vol 121 (4) ◽  
pp. 1232-1243 ◽  
Author(s):  
Reece E. Mazade ◽  
Michael D. Flood ◽  
Erika D. Eggers

During adaptation from dim to bright environments, changes in retinal signaling are mediated, in part, by dopamine. Dopamine is released with light and can modulate retinal receptive fields, neuronal coupling, inhibitory receptors, and rod pathway inhibition. However, it is unclear how dopamine affects inner retinal inhibition to cone bipolar cells, which relay visual information from photoreceptors to ganglion cells and are important signal processing sites. We tested the hypothesis that dopamine (D)1 receptor activation is sufficient to elicit light-adapted inhibitory changes. Local light-evoked inhibition and spontaneous activity were measured from OFF cone bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF38393 reduced local inhibitory light-evoked response magnitude and increased response transience, which mimicked changes measured with light adaptation. D1-mediated reductions in local inhibition were more pronounced for glycinergic than GABAergic inputs, comparable with light adaptation. The effects of D1 receptors on light-evoked input were similar to the effects on spontaneous input. D1 receptor activation primarily decreased glycinergic spontaneous current frequency, similar to light adaptation, suggesting mainly a presynaptic amacrine cell site of action. These results expand the role of dopamine to include signal modulation of cone bipolar cell local inhibition. In this role, D1 receptor activation, acting primarily through glycinergic amacrine cells, may be an important mechanism for the light-adapted reduction in OFF bipolar cell inhibition since the actions are similar and dopamine is released during light adaptation. NEW & NOTEWORTHY Retinal adaptation to different luminance conditions requires the adjustment of local circuits for accurate signaling of visual scenes. Understanding mechanisms behind luminance adaptation at different retinal levels is important for understanding how the retina functions in a dynamic environment. In the mouse, we show that dopamine pathways reduce inner retinal inhibition similar to increased background luminance, suggesting the two are linked and highlighting a possible mechanism for light adaptation at an early retinal processing center.


1999 ◽  
Vol 16 (6) ◽  
pp. 1181-1189 ◽  
Author(s):  
STEPHEN C. MASSEY ◽  
STEPHEN L. MILLS

Electrical synapses or gap junctions occur between many retinal neurons. However, in most cases, the gap junctions have not been visualized directly. Instead, their presence has been inferred from tracer spread throughout the network of cells. Thus, tracer coupling is taken as a marker for the presence of gap junctions between coupled cells. AII amacrine cells are critical interneurons in the rod pathway of the mammalian retina. Rod bipolar cell output passes to AII amacrine cells, which in turn make conventional synapses with OFF cone bipolar cells and gap junctions with ON cone bipolar cells. Injections of biotinylated tracers into AII amacrine cells reveals coupling between the AII amacrine cell network and heterologous coupling with a variety of ON cone bipolar cells, including the calbindin-positive cone bipolar cell. To directly visualize gap junctions in this network, we prepared material for electron microscopy that was double labeled with antibodies to calretinin and calbindin to label AII amacrine cells and calbindin-positive cone bipolar cells, respectively. AII amacrine cells were postsynaptic to large vesicle-laden rod bipolar terminals, as previously reported. Gap junctions were identified between AII amacrine cells and calbindin-positive cone bipolar cell terminals identified by the presence of immunostaining and ribbon synapses. This represents direct confirmation of gap junctions between two different yet positively identified cells, which are tracer coupled, and provides additional evidence that tracer coupling with Neurobiotin indicates the presence of gap junctions. These results also definitively establish the presence of gap junctions between AII amacrine cells and calbindin bipolar cells which can therefore carry rod signals to the ON alpha ganglion cell.


2010 ◽  
Vol 84 (8) ◽  
pp. 4095-4099 ◽  
Author(s):  
Beatriz Pacheco ◽  
Andrés Finzi ◽  
Kathleen McGee-Estrada ◽  
Joseph Sodroski

ABSTRACT Foamy virus evolution closely parallels that of the host species, indicating virus-host coadaptation. We studied simian foamy viruses (SFVs) from common marmosets, spider monkeys, and squirrel monkeys, New World monkey (NWM) species that share geographic ranges. The TRIM5α protein from each of these NWM species inhibited the replication of at least one of the SFVs associated with the other two species but did not affect the replication of its own SFV. Thus, TRIM5α has potentially shaped the evolution of SFVs in NWM hosts. Conversely, SFVs may have influenced the evolution of TRIM5 variants in New World primates.


2020 ◽  
Author(s):  
Amanda J. McLaughlin ◽  
Kumiko A. Percival ◽  
Jacqueline Gayet-Primo ◽  
Teresa Puthussery

AbstractAdapting between scotopic and photopic illumination involves switching the routing of retinal signals between rod and cone-dominated circuits. In the daytime, cone signals pass through parallel On and Off cone bipolar cells, that are sensitive to increments and decrements in luminance, respectively. At night, rod signals are routed into these cone-pathways via a key glycinergic interneuron, the AII amacrine cell (AII-AC). In primates, it is not known whether AII-ACs contact all Off-bipolar cell types indiscriminately, or whether their outputs are biased towards specific Off-bipolar cell types. Here, we show that the rod-driven glycinergic output of AII-ACs is strongly biased towards a subset of macaque Off-cone bipolar cells. The Off-bipolar types that receive this glycinergic input have sustained physiological properties and include the Off-midget bipolar cells, which provide excitatory input to the Off-midget ganglion cells (parvocellular pathway). The kinetics of the glycinergic events are consistent with the involvement of the α1 glycine receptor subunit. Taken together with results in mouse retina, our findings point towards a conserved motif whereby rod signals are preferentially routed into sustained Off signaling pathways.Significance StatementVisual signals pass through different retinal neurons depending on the prevailing level of illumination. Under night-time light levels, signals from rods pass through the AII amacrine cell, an inhibitory interneuron that routes rod signals into On and Off bipolar cells to detect increments and decrements in light intensity, respectively. Here, we show in primate retina that the output of AII amacrine cells is strongly biased towards specific Off bipolar cell types, which suggests that rod signals reach the brain via specific neural channels. Our results further our understanding of how visual signals are routed through visual circuits during night-time vision.


2001 ◽  
Vol 86 (5) ◽  
pp. 2285-2298 ◽  
Author(s):  
Ko Matsui ◽  
Jun Hasegawa ◽  
Masao Tachibana

In many vertebrate CNS synapses, the neurotransmitter glutamate activates postsynaptic non- N-methyl-d-aspartate (NMDA) and NMDA receptors. Since their biophysical properties are quite different, the time course of excitatory postsynaptic currents (EPSCs) depends largely on the relative contribution of their activation. To investigate whether the activation of the two receptor subtypes is affected by the synaptic interaction in the inner plexiform layer (IPL) of the mouse retina, we analyzed the properties of the light-evoked responses ofon-cone bipolar cells and on-transient amacrine cells in a retinal slice preparation. on-transient amacrine cells were whole cell voltage-clamped, and the glutamatergic synaptic input from bipolar cells was isolated by a cocktail of pharmacological agents (bicuculline, strychnine, curare, and atropine). Direct puff application of NMDA revealed the presence of functional NMDA receptors. However, the light-evoked EPSC was not significantly affected byd(−)-2-amino-5-phosphonopentanoic acid (d-AP5), but suppressed by 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). These results indicate that the light-evoked EPSC is mediated mainly by AMPA receptors under this condition. Since bipolar cells have GABACreceptors at their terminals, it has been suggested that bipolar cells receive feedback inhibition from amacrine cells. Application of (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific blocker of GABAC receptors, suppressed both the GABA-induced current and the light-evoked feedback inhibition observed in on-cone bipolar cells and enhanced the light-evoked EPSC of on-transient amacrine cells. In the presence of TPMPA, the light-evoked EPSC of amacrine cells was composed of AMPA and NMDA receptor-mediated components. Our results suggest that photoresponses of on-transient amacrine cells in the mouse retina are modified by the activation of presynaptic GABAC receptors, which may control the extent of glutamate spillover.


1999 ◽  
Vol 16 (1) ◽  
pp. 169-177 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

The distribution of AMPA-selective glutamate receptor subunits was studied in the cat retina using antisera against GluR1 and GluR2/3. Both antisera were localized in postsynaptic sites in the outer plexiform layer (OPL) as well as the inner plexiform layer (IPL). Immunoreactivity for GluR1 was seen in a subpopulation of OFF cone bipolar cells and a number of amacrine and ganglion cells. Within the IPL, processes staining for GluR1 received input from OFF and ON cone bipolar cells but not from rod bipolars. Labeling for GluR2/3 was seen in horizontal cells, an occasional cone bipolar cell, and numerous amacrine and ganglion cells. In the IPL, GluR2/3 staining was postsynaptic to cone bipolar cells in both sublaminae. AII amacrine cells which receive rod bipolar input were also labeled for GluR2/3. With both antisera, staining was limited to a single member of the bipolar dyad complex, providing morphological evidence for functional diversity in glutamatergic pathways.


1993 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Ann H. Milam ◽  
Dennis M. Dacey ◽  
Alexander M. Dizhoor

AbstractHuman, macaque monkey, and rat retinas were immunostained with a polyclonal antibody preparation against purified recoverin, a 23-kD calcium-binding protein isolated from bovine retina that localizes to rods and cones (Dizhoor et al., 1991). In addition to immunoreactive photoreceptors, we have identified subpopulations of recoverin-positive bipolar cells in all three species. Results from immunostaining with progressive dilutions of anti-recoverin and preadsorption of the antibody with a dilution series of purified recoverin showed that photoreceptors and bipolar cells had similar affinities for the antibody and suggested that the molecule recognized by the antibody in both cell types is recoverin. Immunoreactivity for recoverin and protein kinase C, a selective marker for all rod bipolar cells, was found in separate bipolar cell populations. Recoverin immunoreactivity is therefore a characteristic of certain cone bipolar cell types.In rat retina, anti-recoverin labeled two morphologically distinct subpopulations of cone bipolar cells whose axonal arbors stratified at different depths in the inner plexiform layer (IPL). The bipolar cells labeled with anti-recoverin did not correspond to those that were reactive for calbindin, another cone bipolar cell marker.Human and monkey retinas also had two populations of cone bipolar cells that were recoverin-positive. One population showed a distinct pattern of narrow bistratification at the outer border of the IPL and a regular mosaic arrangement of its axonal arbors, suggesting that the entire population of a single cone bipolar type was labeled. Cell density, dendritic morphology, and axonal-field size and stratification indicate that anti-recoverin selectively stains the flat midget (presumed OFF-center) cone bipolar cell type observed previously in Golgi preparations. By contrast the second bipolar cell population had axonal stratification in the inner half of the IPL and showed an unusual but consistent morphology and spatial distribution. Individual cells were intensely stained but were present at an extremely low density (~2−5 cells/mm2). These cells had multibranched dendritic trees characteristic of the diffuse bipolar cell class, but very small axonal fields in the size range of the midget bipolar class. Neither of the two recoverin-positive bipolar cell types in monkey was labeled with anti-calbindin or anti-cholecystokinin. An antibody preparation against bovine pineal hydroxyindole-O-methyltransferase (HIOMT) labeled photoreceptors and bipolar cells that closely resembled the recoverin-positive bipolar cells in human and rat retinas. Preadsorption of this antibody preparation with purified recoverin abolished immunostaining of the bipolar cells, suggesting that the anti-HIOMT preparation contains antibodies against recoverin, which is known to be present in the bovine pineal gland.


Sign in / Sign up

Export Citation Format

Share Document