Morphological and molecular phylogenetic studies in South American Cortinarius species

2003 ◽  
Vol 107 (10) ◽  
pp. 1143-1156 ◽  
Author(s):  
Sigisfredo Garnica ◽  
Michael Weiß ◽  
Franz Oberwinkler
Zootaxa ◽  
2009 ◽  
Vol 2173 (1) ◽  
pp. 66-68 ◽  
Author(s):  
FELIPE F. CURCIO ◽  
VÍTOR DE Q. PIACENTINI ◽  
DANIEL S. FERNANDES

The genus Erythrolamprus Boie (1826) comprises six species of Central and South American false coral snakes (Peters & Orejas-Miranda 1970; Zaher 1999; Curcio et al. 2009). It is traditionally allocated in the tribe Xenodontini (subfamily Xenodontinae), along with the genera Liophis, Lystrophis, Umbrivaga, Waglerophis and Xenodon (sensu Dixon 1980; Cadle 1984; Myers 1986; Ferrarezzi 1994; Zaher 1999). Although Xenodontini is supported by morphological and molecular evidence, phylogenetic relationships and classification within the tribe have been the subject of recent debate. Molecular phylogenetic studies have recovered clades with Erythrolamprus nested within some representatives of the genus Liophis (Vidal et al. 2000; Zaher et al. 2009), partly corroborating previous hypotheses based on morphology (e.g. Dixon 1980).


2019 ◽  
Author(s):  
Nicolás N. Moreyra ◽  
Julián Mensch ◽  
Juan Hurtado ◽  
Francisca Almeida ◽  
Cecilia Laprida ◽  
...  

AbstractThe Drosophila repleta group is an array of more than 100 cactophilic species endemic to the “New World”. The acquisition of the ability to utilize decaying cactus tissues as breeding and feeding sites is a key aspect that allowed the successful diversification of the repleta group in the American deserts. Within this group, the Drosophila buzzatii cluster is a South American clade of seven cactophilic closely related species in different stages of divergence, a feature that makes it a valuable model system for evolutionary research. However, even though substantial effort has been devoted to elucidating the phylogenetic relationships among members of the D. buzzatii cluster, the issue is still controversial. In effect, molecular phylogenetic studies performed to date generated ambiguous results since tree topologies depend on the kind of molecular marker employed. Curiously, even though mitochondrial DNA has become a popular marker in evolutionary biology and population genetics, none of the more than twenty Drosophila mitogenomes assembled so far belongs to this cluster. In this work we report the assembly of six complete mitogenomes of five species: D. antonietae, D. borborema, D. buzzatii, D. seriema and two strains of D. koepferae, with the aim to revisit the phylogenetic relationships and divergence times by means of a mitogenomic approach. The recovered topology using complete mitogenomes gives support to the hypothesis of the monophyly of that the D. buzzatii cluster and shows two main clades, one including D. buzzatii and D. koepferae (both strains) and the other the remaining species. These results are in agreement with previous reports based on a few mitochondrial and/or nuclear genes but in conflict with the results of a recent large-scale nuclear phylogeny, suggesting that nuclear and mitochondrial genomes depict different evolutionary histories.


2020 ◽  
Vol 153 (3) ◽  
pp. 446-454
Author(s):  
Luciana Pereira-Silva ◽  
Rafael Trevisan ◽  
Ana Claudia Rodrigues ◽  
Isabel Larridon

Background and aims – Molecular phylogenetic studies have provided a clearer understanding of the complex relationships within the family Cyperaceae. These studies have consistently shown that 12 allied genera are nested in the genus Cyperus. However, early Sanger sequencing-based phylogenies that included the two species of the small South American genus Androtrichum were inconclusive in placing this genus either as sister to Cyperus or as part of its early divergent lineages. A recent phylogenetic analysis however conclusively placed the two species of Androtrichum within the C3 Cyperus Grade. In this study, we investigate if the morphology and anatomy of Androtrichum species provide additional evidence for their placement in the genus Cyperus. In addition, we provide descriptions and distribution data for the species.Material and methods – Herbarium material from FLOR, FURB, GENT, ICN, and K has been studied. Samples of the culm and leaf were studied using histological methods. Taxonomic changes and typifications of names were performed according to the International Code of Nomenclature for algae, fungi, and plants. Key results – The morphology and the non-Kranz anatomy observed in the Androtrichum species confirm their placement among the other C3  Cyperus species. Androtrichum is combined into Cyperus. For one species, a combination in Cyperus is already available: Cyperus trigynus. For the other species, a new name in Cyperus is published: Cyperus byssaceus. Two typifications are established and morphological descriptions and distribution data are provided. Conclusion – By integrating recent molecular phylogenetic data with additional evidence from morphology and anatomy, Androtrichum is combined into Cyperus. As a result of this taxonomic change, a single monophyletic genus Cyperus is now recognised in the Cyperus Clade of tribe Cypereae.


2019 ◽  
Vol 192 (1) ◽  
pp. 97-120 ◽  
Author(s):  
Leonardo Nogueira Da Silva ◽  
Liliana Essi ◽  
João Ricardo Vieira Iganci ◽  
Tatiana Teixeira De Souza-Chies

Abstract Chascolytrum, as currently circumscribed, includes 22–23 South American species that were previously included in nine different genera (Chascolytrum, Briza, Poidium, Calotheca, Microbriza, Gymnachne, Rhombolytrum, Lombardochloa and Erianthecium). Due to the remarkable morphological diversity, the relationships in Chascolytrum s.l. have remained poorly understood, and no infrageneric classification could be proposed based on the latest molecular phylogenetic studies. In this study, we combined molecular (GBSSI, trnL-trnL-trnF and rps16 intron) and morphological characters to investigate the phylogenetic relationships in Chascolytrum s.l. Based on this, morphologically diagnosable clades were recognized as eight sections (Calotheca, Chascolytrum, Hildaea, Lombardochloa, Microbriza, Obovatae, Poidium and Tricholemma), of which three are new and three are monospecific. We describe each section and discuss the new infrageneric classification in comparison with the previous infrageneric classification proposed for the group under the genus Briza. A taxonomic key and images for most of the species in each section are provided. Last, the use of single-copy nuclear genes and morphological data for future phylogenetic reconstructions encompassing Chascolytrum is highlighted.


Zootaxa ◽  
2009 ◽  
Vol 2174 (1) ◽  
pp. 51-62 ◽  
Author(s):  
P. A. DINGHI ◽  
V. CONFALONIERI ◽  
M. M. CIGLIANO

The Dichroplini genera Scotussa, Leiotettix, Ronderosia, Atrachelacris, Chlorus, Eurotettix and Dichromatos have been grouped into the “Paranaense-Pampeano” informal genus group, based on characters of the male genitalia. However, recent molecular phylogenetic analyses showed weak support values or no support at all for this group. In this study, we used molecular and morphological characters to test the monophyly of this informal genus group. Morphological characters included aspects of the general morphology, and male and female genitalia as well. Whereas the molecular data was based on one mitochondrial gene: cytochrome oxidase I. Independent and combined phylogenetic analyses of the data were performed under both unweighted and implied weighting parsimony. Our results showed that, when only molecular data is considered, the “Paranaense-Pampeano” informal genus group is not recovered. However, the group is monophyletic according to morphological and combined analyses. The “Paranaense-Pampeano” informal genus group is considered to be a natural clade; therefore, we propose the genus group name Scotussae. As a final remark, the molecular data provided in most cases the same evidence of relationships as morphology.


2010 ◽  
Vol 23 (1) ◽  
pp. 38 ◽  
Author(s):  
M. Amelia Chemisquy ◽  
Osvaldo Morrone

The systematic position and relationships between some South American terrestrial orchids, such as Bipinnula Comm. ex Juss., Chloraea Lindl., Gavilea Poepp. and Geoblasta Barb. Rodr., is unclear. These four genera have been grouped in the subtribe Chloraeinae by several authors. Previous phylogenetic studies of the group have included only a few species of Chloraea and Gavilea and not of Bipinnula or Geoblasta. Relationships among these four genera were explored and the monophyly of the subtribe Chloraeinae and the genera Chloraea and Gavilea were tested in this contribution. Molecular phylogenetic analyses were conducted, using the following three chloroplast markers: the matK–trnK intron, the atpB–rbcL spacer and the rpoC1 gene. Sequences were analysed under maximum parsimony and Bayesian inference. In all the analyses, Bipinnula, Chloraea, Gavilea and Geoblasta were grouped in a clade with high support, where Bipinnula, Geoblasta and Gavilea were nested inside Chloraea. Consequently, Chloraea was paraphyletic, whereas Gavilea turned out to be monophyletic with high values of support. The other species of tribe Cranichideae appeared as sister groups of the Chloraeinae. A more exhaustive taxonomic sampling is needed to resolve the systematic placement of the subtribe Chloraeinae and the internal relationships between the genera and species that form it.


Phytotaxa ◽  
2014 ◽  
Vol 177 (5) ◽  
pp. 280
Author(s):  
Patricio Saldivia ◽  
LUIS FAÚNDEZ ◽  
ALICIA MARTICORENA ◽  
JOSÉ L. PANERO

Kieslingia chilensis, a new genus and species of tribe Astereae (Asteraceae) from northern Chile restricted to the Huasco river basin of the Andes pre-mountain Range in the Atacama region is described and illustrated. The combination of its diagnostic characters including discoid homogamous capitula, alveolate epaleate receptacles, and deeply trifid leaves, is not found in any other species of South American Astereae.  An ITS phylogenic analysis placed Kieslingia chilensis within subtribe Hinterhuberinae, and sister to the genus Guynesomia, also endemic to Chile.  The morphological characteristics of Kieslingia chilensis are compared and contrasted to sister taxa as identified by the molecular phylogenetic studies and the environmental features of the area where the species is found are discussed.  A key to distinguish Kieslingia from other Astereae genera of northern Chile is given.  Based on IUCN criteria and categories we assign the Endangered (EN) category to Kieslingia chilensis.


2014 ◽  
Vol 72 (1) ◽  
pp. 35-60 ◽  
Author(s):  
V. Y. Mogni ◽  
L. J. Oakley ◽  
D. E. Prado

The Pleistocene Arc Theory (PAT) suggests that present-day disjunct fragments of dry forests in central tropical South America give evidence of a previously more continuous distribution during the Pleistocene that has been disrupted by dry-cold vs. humid-warm climatic cycles. This Arc extends from NE Brazil to NE Argentina and eastern Paraguay, through the Chiquitanía to NW Argentina and SW Bolivia and into the dry inter-Andean valleys in Peru and Ecuador, with intrusions into the Great Chaco. Seasonally Dry Tropical Forests (SDTFs) are floristically and physiognomically dominated by woody legumes, mostly deciduous in the dry season. In the last two decades field collection and research on legume taxa has greatly increased, with a significant number of taxonomic revisions and molecular phylogenetic studies, together with some paleoclimatic modelling studies. The evidence accumulated in the last 23 years has confirmed the integrity of the Chaco and Caatingas phytogeographical provinces, with an impressive and increasing level of botanical endemism discovered. The PAT pattern has also been supported, specifically through the mapping of five selected woody Leguminosae species (Anadenanthera colubrina, Enterolobium contortisiliquum, Pterogyne nitens, Amburana cearensis and Piptadenia viridiflora). The pre-existing nuclei of South American SDTF (Caatingas, Misiones and Piedmont) are now increased to four with the postulation of the Chiquitanía Nucleus in south-eastern Bolivia and bordering Paraguay. Some new endemisms are compiled from recent literature and mapped for the Misiones and Chiquitanía nuclei. The need for more botanical collections and further taxonomic, phylogenetic and demographic studies of South American legumes is emphasised.


Phytotaxa ◽  
2018 ◽  
Vol 360 (2) ◽  
pp. 114 ◽  
Author(s):  
IHSAN A. AL-SHEHBAZ ◽  
ASUNCIÓN CANO ◽  
MARCO ANTONIO CUEVA MANCHEGO ◽  
DIEGO L. SALARIATO

The Peruvian genus Machaerophorus has long been reduced to synonymy of several genera of various tribes. With the discovery of two new species described below, M. arequipa and M. laticarpus, and availability of material for molecular phylogenetic studies, the genus is reinstated for the first time in over a century and included within the South American “Cremolobeae-Eudemeae-Schizopetaleae” clade.


Author(s):  
D. G. Melnikov ◽  
L. I. Krupkina

Based on the published data of molecular phylogenetic studies of the tribe Cariceae Dumort. genera (Cyperaceae), obtained by an international collaboration (The Global Carex Group, 2016; et al.), and morphological characters of the genera (Kukkonen, 1990; and others), new nomenclatural combinations and replacement names in the genus Carex L. are published for 11 species, one subspecies and two sections previously included in the genus Kobresia Willd.


Sign in / Sign up

Export Citation Format

Share Document