scholarly journals Astronomy from Antarctica

2005 ◽  
Vol 17 (4) ◽  
pp. 555-560 ◽  
Author(s):  
J.W.V. STOREY

Astronomers have always sought the very best locations for their telescopes. From observatories in city centres, astronomers moved first to nearby mountain tops, then to remote sites in distant countries, to aircraft, and into space. In the past decade we have come to realize that the best astronomical observing conditions on the surface of the earth are to be found on the Antarctic plateau. The combination of high altitude, low temperature, low absolute humidity, low wind and extremely stable atmosphere offers astronomers gains in sensitivity and measurement precision that can exceed two orders of magnitude over even the best temperate sites. In addition, spectral windows are opened up – particularly in the far-infrared and terahertz regions – that are otherwise only accessible from high-flying aircraft or from space. Established and highly successful telescopes at the South Pole are soon to be joined by a new generation of facilities at Concordia Station, including large telescopes and interferometers. It has even been suggested that the largest optical telescopes currently proposed, with diameters of up to 100 m, might achieve their science goals at a lower overall cost if they are built on the Antarctic plateau rather than at a temperate site. Such telescopes offer the possibility of not only detecting earth-like planets in other star systems, but also of analysing their atmospheres spectroscopically.

2008 ◽  
Vol 4 (S259) ◽  
pp. 653-662 ◽  
Author(s):  
Oleg Kochukhov ◽  
Nicolai Piskunov

AbstractWe review general properties and capabilities of the instrumentation employed to diagnose cosmic magnetic fields using medium-size and large optical telescopes. During the last decade these spectropolarimeters and high-resolution spectrographs have been successfully used to detect and characterize magnetic fields in stars across the H-R diagram. A new generation of high-resolution spectropolarimeters will benefit from the large collecting area of the future E-ELT and currently operating 8-m class telescopes. We review plans to develop spectropolarimeters for these very large telescopes and outline a number of science cases where new spectropolarimetric instrumentation is expected to play a key role.


2005 ◽  
Vol 13 ◽  
pp. 956-957
Author(s):  
J.S. Lawrence

AbstractThe primary limitation to the performance of any large ground-based telescope is the atmospheric properties of its site, particularly the sky emission and the turbulence structure. There are several sites on the Antarctic plateau (South Pole, Dome C and Dome A) for which the increase in infrared sensitivity relative to a mid-latitude site should be as much as two orders of magnitude. The unique turbulent structure above Dome C indicates that an extremely large telescope equipped with only a natural guide star adaptive optics system should achieve equivalent resolution to a mid-latitude extremely large telescope with a multi-conjugate multi-laser guide star system.


2002 ◽  
Vol 12 ◽  
pp. 453-455
Author(s):  
D.J. Wilner

The number of spectroscopically confirmed galaxies at high redshift is increasing rapidly, with many being found efficiently by deep optical imaging and color selection. In parallel, a confluence of technical developments is bringing rapid progress to the domain of observations of cold gas and dust at high redshift. Large telescopes operating at high, dry sites, with a new generation of sensitive detectors, together with recent satellite missions, are opening up new areas of study through observations of dust continuum emission and associated atomic and molecular emission and absorption lines. These data bear directly on fundamental questions of cosmic evolution by probing the ordinary cool material that forms stars and fuels active galactic nuclei. Analysis of data from theCOBEsatellite confirms the presence of a diffuse far-infrared background from a widespread population of distant dusty objects. The global energetics of the optical and far-infrared backgrounds suggest that perhaps half of distant activity may be enshrouded by dust. Understanding the nature and redshifts of the sources responsible for these emissions is profoundly important. The intent of Joint Discussion 9, between Division X (Radio Astronomy) and Division XIII (Galaxies and the Universe), was to provide a forum to present observations from this newly accessible realm and to consider the astrophysical implications.


2021 ◽  
Vol 21 (18) ◽  
pp. 13811-13833
Author(s):  
William Cossich ◽  
Tiziano Maestri ◽  
Davide Magurno ◽  
Michele Martinazzo ◽  
Gianluca Di Natale ◽  
...  

Abstract. Statistics on the occurrence of clear skies, ice clouds, and mixed-phase clouds over Concordia Station, in the Antarctic Plateau, are provided for multiple timescales and analyzed in relation to simultaneous meteorological parameters measured at the surface. Results are obtained by applying a machine learning cloud identification and classification (CIC) code to 4 years of measurements between 2012–2015 of downwelling high-spectral-resolution radiances, measured by the Radiation Explorer in the Far Infrared – Prototype for Applications and Development (REFIR-PAD) spectroradiometer. The CIC algorithm is optimized for Antarctic sky conditions and results in a total hit rate of almost 0.98, where 1.0 is a perfect score, for the identification of the clear-sky, ice cloud, and mixed-phase cloud classes. Scene truth is provided by lidar measurements that are concurrent with REFIR-PAD. The CIC approach demonstrates the key role of far-infrared spectral measurements for clear–cloud discrimination and for cloud phase classification. Mean annual occurrences are 72.3 %, 24.9 %, and 2.7 % for clear sky, ice clouds, and mixed-phase clouds, respectively, with an inter-annual variability of a few percent. The seasonal occurrence of clear sky shows a minimum in winter (66.8 %) and maxima (75 %–76 %) during intermediate seasons. In winter the mean surface temperature is about 9 ∘C colder in clear conditions than when ice clouds are present. Mixed-phase clouds are observed only in the warm season; in summer they amount to more than one-third of total observed clouds. Their occurrence is correlated with warmer surface temperatures. In the austral summer, the mean surface air temperature is about 5 ∘C warmer when clouds are present than in clear-sky conditions. This difference is larger during the night than in daylight hours, likely due to increased solar warming. Monthly mean results are compared to cloud occurrence and fraction derived from gridded (Level 3) satellite products from both passive and active sensors. The differences observed among the considered products and the CIC results are analyzed in terms of footprint sizes and sensors' sensitivities to cloud optical and geometrical features. The comparison highlights the ability of the CIC–REFIR-PAD synergy to identify multiple cloud conditions and study their variability at different timescales.


1994 ◽  
Vol 11 (2) ◽  
pp. 127-150 ◽  
Author(s):  
Michael Burton ◽  
D. K. Aitken ◽  
D. A. Allen ◽  
M. C. B. Ashley ◽  
M. G. Burton ◽  
...  

Our knowledge of the universe comes from recording the photon and particle fluxes incident on the Earth from space. We thus require sensitive measurement across the entire energy spectrum, using large telescopes with efficient instrumentation located on superb sites. Technological advances and engineering constraints are nearing the point where we are recording as many photons arriving at a site as is possible. Major advances in the future will come from improving the quality of the site. The ultimate site is, of course, beyond the Earth’s atmosphere, such as on the Moon, but economic limitations prevent our exploiting this avenue to the degree that the scientific community desires. Here we describe an alternative, which offers many of the advantages of space for a fraction of the cost: the Antarctic Plateau.


2011 ◽  
Vol 28 (3) ◽  
pp. 266-270 ◽  
Author(s):  
Jeremy Mould

AbstractThe next generation 2-μm sky survey should target nascent galaxies in the epoch of reionization for spectroscopic followup on large telescopes. A 2.5-m telescope at a site on the Antarctic plateau has advantages for this purpose and for southern hemisphere infrared surveys in general.


2021 ◽  
Author(s):  
William Cossich ◽  
Tiziano Maestri ◽  
Davide Magurno ◽  
Michele Martinazzo ◽  
Gianluca Di Natale ◽  
...  

Abstract. Statistics on the occurrence of clear skies, ice and mixed-phase clouds over the Concordia station, in the Antarctic Plateau, are provided for multiple time scales and analysed in relation to simultaneous meteorological parameters measured at the surface. Results are obtained by applying a machine learning cloud identification and classification code (named CIC) to 4 years of measurements between 2012–2105 of down-welling high spectral resolution radiances, measured by the Radiation Explorer in the Far Infrared-Prototype for Applications and Development (REFIR-PAD) spectroradiometer. The CIC algorithm is optimized for Antarctic sky conditions (clear sky, ice clouds, and mixed-phase clouds) and results in a total hit rate of almost 0.98, where 1.0 is a perfect score. Scene truth is provided by LiDAR measurements that are concurrent with REFIR-PAD. The CIC approach demonstrates the key role of far infrared spectral measurements for clear/cloud discrimination and for cloud phase classification. Mean annual occurrences are 72.3 %, 24.9 % and 2.7 % for clear sky, ice and mixed-phase clouds respectively, with an inter-annual variability of a few percent. The seasonal occurrence of clear sky shows a minimum in winter (66.8 %) and maxima (75–76 %) during intermediate seasons. In winter the mean surface temperature is about 9 °C colder in clear conditions than when ice clouds are present. Mixed-phase clouds are observed only in the warm season; in summer they amount to more than one third of total observed clouds. Their occurrence is correlated with warmer surface temperatures. In the austral summer, the mean surface air temperature is about 5 °C warmer when clouds are present than in clear sky conditions. This difference is larger during the night than in daylight hours, likely due to increased solar warming. A comparison of monthly mean results with cloud occurrence/fraction derived from gridded (Level-3) satellite products, from both passive and active sensors, emphasizes the difficulty of adequately inferring cloud/clear-sky properties in the Antarctic region and highlights the ability of the CIC/REFIR-PAD synergy to identify multiple cloud conditions and study their variability at different time scales.


Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


Sign in / Sign up

Export Citation Format

Share Document