scholarly journals Steady state solutions for a lubrication multi-fluid flow

2011 ◽  
Vol 22 (6) ◽  
pp. 581-612 ◽  
Author(s):  
LAURENT CHUPIN ◽  
BÉRÉNICE GREC

We describe possible solutions for a stationary flow of two superposed fluids between two close surfaces in relative motion. Physically, this study is within the lubrication framework, in which it is of interest to predict the relative positions of the lubricant and the air in the device. Mathematically, we observe that this problem corresponds to finding the interface between the two fluids, and we prove that this interface can be viewed as a square root of a polynomial of degree at most 6. We solve this equation using an original method. First, we check that our results are consistent with previous work. Next, we use this solution to answer some physically relevant questions related to the lubrication setting. For instance, we obtain theoretical and numerical results, which can predict the occurrence of a full film with respect to physical parameters (fluxes, shear velocity, viscosities). In particular, we present a figure giving the number of stationary solutions depending on the physical parameters. Moreover, we give some indications for a better understanding of the multi-fluid case.

2011 ◽  
Vol 22 (4) ◽  
pp. 317-331 ◽  
Author(s):  
M. BURNS ◽  
M. GRINFELD

In this paper, we consider the bi-stable equation proposed by Rosenau to replace the Allen–Cahn equation in the case of large gradients. We discuss the bifurcation problem for stationary solutions of this equation on an interval as the diffusion coefficient and the length of the interval are varied, concentrating on classical solutions.


1955 ◽  
Vol 33 (12) ◽  
pp. 819-823 ◽  
Author(s):  
J. J. Gibbons

Methods of generating exact steady-state solutions for the flow of superimposed positive and negative fluids are developed for the cases of linear and cylindrical motion. The two fluids are assumed to be subject only to body forces arising from the total E and B fields. It is shown that the only axially symmetric solutions are of cylindrical symmetry, i.e. rotating spheres or rings of charge cannot satisfy the equations where the two fluids overlap.


1977 ◽  
Vol 24 (4) ◽  
pp. 651-659 ◽  
Author(s):  
George L. Jensen ◽  
Albert S. Paulson ◽  
Pasquale Sullo

2014 ◽  
Vol 14 (04) ◽  
pp. 1450009 ◽  
Author(s):  
Andrew Yee Tak Leung ◽  
Hong Xiang Yang ◽  
Ping Zhu

This paper is concerned with the steady state bifurcations of a harmonically excited two-member plane truss system. A two-degree-of-freedom Duffing system having nonlinear fractional derivatives is derived to govern the dynamic behaviors of the truss system. Viscoelastic properties are described by the fractional Kelvin–Voigt model based on the Caputo definition. The combined method of harmonic balance and polynomial homotopy continuation is adopted to obtain steady state solutions analytically. A parametric study is conducted with the help of amplitude-response curves. Despite its seeming simplicity, the mechanical system exhibits a wide variety of structural responses. The primary and sub-harmonic resonances and chaos are found in specific regions of system parameters. The dynamic snap-through phenomena are observed when the forcing amplitude exceeds some critical values. Moreover, it has been shown that, suppression of undesirable responses can be achieved via changing of viscosity of the system.


1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Sign in / Sign up

Export Citation Format

Share Document