scholarly journals Mathematical modelling of Tyndall star initiation

2015 ◽  
Vol 26 (5) ◽  
pp. 615-645 ◽  
Author(s):  
A. A. LACEY ◽  
M. G. HENNESSY ◽  
P. HARVEY ◽  
R. F. KATZ

The superheating that usually occurs when a solid is melted by volumetric heating can produce irregular solid–liquid interfaces. Such interfaces can be visualised in ice, where they are sometimes known as Tyndall stars. This paper describes some of the experimental observations of Tyndall stars and a mathematical model for the early stages of their evolution. The modelling is complicated by the strong crystalline anisotropy, which results in an anisotropic kinetic undercooling at the interface; it leads to an interesting class of free boundary problems that treat the melt region as infinitesimally thin.

Author(s):  
Avner Friedman

In this paper, I review several free boundary problems that arise in the mathematical modelling of biological processes. The biological topics are quite diverse: cancer, wound healing, biofilms, granulomas and atherosclerosis. For each of these topics, I describe the biological background and the mathematical model, and then proceed to state mathematical results, including existence and uniqueness theorems, stability and asymptotic limits, and the behaviour of the free boundary. I also suggest, for each of the topics, open mathematical problems.


2005 ◽  
Vol 58 (8) ◽  
pp. 1051-1076 ◽  
Author(s):  
Herbert Koch ◽  
Giovanni Leoni ◽  
Massimiliano Morini

2020 ◽  
Vol 20 (2) ◽  
pp. 437-458 ◽  
Author(s):  
Félix del Teso ◽  
Jørgen Endal ◽  
Juan Luis Vázquez

AbstractThe classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main properties of the classical problem that are of interest to us. Then we introduce the fractional Stefan problem and develop the basic theory. After that we center our attention on selfsimilar solutions, their properties and consequences. We first discuss the results of the one-phase fractional Stefan problem, which have recently been studied by the authors. Finally, we address the theory of the two-phase fractional Stefan problem, which contains the main original contributions of this paper. Rigorous numerical studies support our results and claims.


Sign in / Sign up

Export Citation Format

Share Document