scholarly journals Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis–haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more)

Author(s):  
CHRISTINA SURULESCU ◽  
MICHAEL WINKLER

We propose and study a class of parabolic-ordinary differential equation models involving chemotaxis and haptotaxis of a species following signals indirectly produced by another, non-motile one. The setting is motivated by cancer invasion mediated by interactions with the tumour microenvironment, but has much wider applicability, being able to comprise descriptions of biologically quite different problems. As a main mathematical feature constituting a core difference to both classical Keller–Segel chemotaxis systems and Chaplain–Lolas type chemotaxis–haptotaxis systems, the considered model accounts for certain types of indirect signal production mechanisms. The main results assert unique global classical solvability under suitably mild assumptions on the system parameter functions in associated spatially two-dimensional initial-boundary value problems. In particular, this rigorously confirms that at least in two-dimensional settings, the considered indirectness in signal production induces a significant blow-up suppressing tendency also in taxis systems substantially more general than some particular examples for which corresponding effects have recently been observed.

2002 ◽  
Vol 13 (3) ◽  
pp. 337-351 ◽  
Author(s):  
N. I. KAVALLARIS ◽  
C. V. NIKOLOPOULOS ◽  
D. E. TZANETIS

We consider an initial boundary value problem for the non-local equation, ut = uxx+λf(u)/(∫1-1f (u)dx)2, with Robin boundary conditions. It is known that there exists a critical value of the parameter λ, say λ*, such that for λ > λ* there is no stationary solution and the solution u(x, t) blows up globally in finite time t*, while for λ < λ* there exist stationary solutions. We find, for decreasing f and for λ > λ*, upper and lower bounds for t*, by using comparison methods. For f(u) = e−u, we give an asymptotic estimate: t* ∼ tu(λ−λ*)−1/2 for 0 < (λ−λ*) [Lt ] 1, where tu is a constant. A numerical estimate is obtained using a Crank-Nicolson scheme.


2006 ◽  
Vol 61 (5-6) ◽  
pp. 235-238
Author(s):  
Necat Polat ◽  
Doğan Kaya

We consider the blow up of solution to the initial boundary value problem for the generalized Boussinesq equation with damping term. Under some assumptions we prove that the solution with negative initial energy blows up in finite time


2010 ◽  
Vol 07 (02) ◽  
pp. 297-316 ◽  
Author(s):  
C. BOURDARIAS ◽  
M. GISCLON ◽  
S. JUNCA

We consider an initial boundary value problem for a 2 × 2 system of conservation laws modeling heatless adsorption of a gaseous mixture with two species and instantaneous exchange kinetics, close to the system of chromatography. In this model the velocity is not constant because the sorption effect is taken into account. Exchanging the roles of the x, t variables we obtain a strictly hyperbolic system with a zero eigenvalue. Our aim is to construct a solution with a velocity which blows up at the corresponding characteristic "hyperbolic boundary" {t = 0}.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fosheng Wang ◽  
Chengqiang Wang

We are concerned in this paper with the initial boundary value problem for a quasilinear viscoelastic wave equation which is subject to a nonlinear action, to a nonlinear frictional damping, and to a Kelvin-Voigt damping, simultaneously. By utilizing a carefully chosen Lyapunov functional, we establish first by the celebrated convexity argument a finite time blow-up criterion for the initial boundary value problem in question; we prove second by an a priori estimate argument that some solutions to the problem exists globally if the nonlinearity is “weaker,” in a certain sense, than the frictional damping, and if the viscoelastic damping is sufficiently strong.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Li ◽  
Yun Sun ◽  
Wenjun Liu

This paper deals with the initial boundary value problem for the nonlinear viscoelastic Petrovsky equationutt+Δ2u−∫0tgt−τΔ2ux,τdτ−Δut−Δutt+utm−1ut=up−1u. Under certain conditions ongand the assumption thatm<p, we establish some asymptotic behavior and blow-up results for solutions with positive initial energy.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
Jianghao Hao ◽  
Jie Lan

We prove the local existence, blow-up, global existence, and stability of solutions to the initial boundary value problem for Euler-Bernoulli plate equation with variable coefficients.


Sign in / Sign up

Export Citation Format

Share Document