tumour microenvironment
Recently Published Documents


TOTAL DOCUMENTS

1252
(FIVE YEARS 755)

H-INDEX

62
(FIVE YEARS 18)

2022 ◽  
Vol 23 (2) ◽  
pp. 964
Author(s):  
Martin Vokurka ◽  
Lukáš Lacina ◽  
Jan Brábek ◽  
Michal Kolář ◽  
Yi Zhen Ng ◽  
...  

Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziwen Pan ◽  
Rongrong Zhao ◽  
Boyan Li ◽  
Yanhua Qi ◽  
Wei Qiu ◽  
...  

Abstract Background Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. Methods CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. Results We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. Conclusions This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 132
Author(s):  
Mark Samuels ◽  
Chiara Cilibrasi ◽  
Panagiotis Papanastasopoulos ◽  
Georgios Giamas

Resistance to various therapies, including novel immunotherapies, poses a major challenge in the management of breast cancer and is the leading cause of treatment failure. Bidirectional communication between breast cancer cells and the tumour microenvironment is now known to be an important contributor to therapy resistance. Several studies have demonstrated that crosstalk with the tumour microenvironment through extracellular vesicles is an important mechanism employed by cancer cells that leads to drug resistance via changes in protein, lipid and nucleic acid cargoes. Moreover, the cargo content enables extracellular vesicles to be used as effective biomarkers for predicting response to treatments and as potential therapeutic targets. This review summarises the literature to date regarding the role of extracellular vesicles in promoting therapy resistance in breast cancer through communication with the tumour microenvironment.


Author(s):  
Wai Ki Wong ◽  
Bohan Yin ◽  
Ching Ying Katherine Lam ◽  
Yingying Huang ◽  
Jiaxiang Yan ◽  
...  

Effective immunotherapy treats cancers by eradicating tumourigenic cells by activated tumour antigen-specific and bystander CD8+ T-cells. However, T-cells can gradually lose cytotoxicity in the tumour microenvironment, known as exhaustion. Recently, DNA methylation, histone modification, and chromatin architecture have provided novel insights into epigenetic regulations of T-cell differentiation/exhaustion, thereby controlling the translational potential of the T-cells. Thus, developing strategies to govern epigenetic switches of T-cells dynamically is critical to maintaining the effector function of antigen-specific T-cells. In this mini-review, we 1) describe the correlation between epigenetic states and T cell phenotypes; 2) discuss the enzymatic factors and intracellular/extracellular microRNA imprinting T-cell epigenomes that drive T-cell exhaustion; 3) highlight recent advances in epigenetic interventions to rescue CD8+ T-cell functions from exhaustion. Finally, we express our perspective that regulating the interplay between epigenetic changes and transcriptional programs provides translational implications of current immunotherapy for cancer treatments.


Author(s):  
Shenghan Lou ◽  
Jian Zhang ◽  
Xin Yin ◽  
Yao Zhang ◽  
Tianyi Fang ◽  
...  

Solid tumour tissues are composed of tumour and non-tumour cells, such as stromal cells and immune cells. These non-tumour cells constitute an essential part of the tumour microenvironment (TME), which decrease the tumour purity and play an important role in carcinogenesis, malignancy progression, treatment resistance and prognostic assessment. However, the implications of various purity levels in gastric cancer (GC) remain largely unknown. In the present study, we used an in-silico approach to infer the tumour purity of 2,259 GC samples obtained from our hospital and 12 public datasets based on the transcriptomic data. We systematically evaluated the association of tumour purity with clinical outcomes, biological features, TME characteristics and treatment response in GC. We found that tumour purity might be a patient-specific intrinsic characteristic of GC. Low tumour purity was independently correlated with shorter survival time and faster recurrence and significantly associated with mesenchymal, invasive and metastatic phenotypes. Integrating GC purity into a clinical prognostic nomogram significantly improved predictive validity and reliability. In addition, low tumour purity was strongly associated with immune and stromal cell functions. Fibroblasts, endothelial cells and monocytes were markedly enriched in low-purity tumours, serving as robust indicators of a poor prognosis. Moreover, patients with low GC purity may not benefit more from adjuvant chemotherapy. Our findings highlight that tumour purity confers important clinical, biological, microenvironmental and treatment implications for patients with GC. Therefore, a comprehensive evaluation of tumour purity in individual tumours can provide more insights into the molecular mechanisms of GC, facilitate precise classification and clinical prediction and help to develop more effective individualised treatment strategies.


2022 ◽  
Vol 11 ◽  
Author(s):  
Arutha Kulasinghe ◽  
James Monkman ◽  
Esha T. Shah ◽  
Nicholas Matigian ◽  
Mark N. Adams ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has few effective treatment options due to its lack of targetable hormone receptors. Whilst the degree of tumour infiltrating lymphocytes (TILs) has been shown to associate with therapy response and prognosis, deeper characterization of the molecular diversity that may mediate chemotherapeutic response is lacking. Here we applied targeted proteomic analysis of both chemotherapy sensitive and resistant TNBC tissue samples by the Nanostring GeoMx Digital Spatial Platform (DSP). By quantifying 68 targets in the tumour and tumour microenvironment (TME) compartments and performing differential expression analysis between responsive and non-responsive tumours, we show that increased ER-alpha expression and decreased 4-1BB and MART1 within the stromal compartments is associated with adjuvant chemotherapy response. Similarly, higher expression of GZMA, STING and fibronectin and lower levels of CD80 were associated with response within tumour compartments. Univariate overall-survival (OS) analysis of stromal proteins supported these findings, with ER-alpha expression (HR=0.19, p=0.0012) associated with better OS while MART1 expression (HR=2.3, p=0.035) was indicative of poorer OS. Proteins within tumour compartments consistent with longer OS included PD-L1 (HR=0.53, p=0.023), FOXP3 (HR=0.5, p=0.026), GITR (HR=0.51, p=0.036), SMA (HR=0.59, p=0.043), while EPCAM (HR=1.7, p=0.045), and CD95 (HR=4.9, p=0.046) expression were associated with shorter OS. Our data provides early insights into the levels of these markers in the TNBC tumour microenvironment, and their association with chemotherapeutic response and patient survival.


Author(s):  
Hannah Prendeville ◽  
Lydia Lynch

AbstractTumour growth and dissemination is largely dependent on nutrient availability. It has recently emerged that the tumour microenvironment is rich in a diverse array of lipids that increase in abundance with tumour progression and play a role in promoting tumour growth and metastasis. Here, we describe the pro-tumorigenic roles of lipid uptake, metabolism and synthesis and detail the therapeutic potential of targeting lipid metabolism in cancer. Additionally, we highlight new insights into the distinct immunosuppressive effects of lipids in the tumour microenvironment. Lipids threaten an anti-tumour environment whereby metabolic adaptation to lipid metabolism is linked to immune dysfunction. Finally, we describe the differential effects of commondietary lipids on cancer growth which may uncover a role for specific dietary regimens in association with traditional cancer therapies. Understanding the relationship between dietary lipids, tumour, and immune cells is important in the context of obesity which may reveal a possibility to harness the diet in the treatment of cancers.


2022 ◽  
Author(s):  
Karan M Shah ◽  
Luke Tattersall ◽  
Aleana Hussain ◽  
Sarah C Macfarlane ◽  
Alexander Williamson ◽  
...  

Breast cancer metastasis to bone is a major contributor to morbidity and mortality in patients and remains an unmet clinical need. Purinergic signalling via the P2X7 receptor (P2RX7) in the primary tumour microenvironment is associated with progression of several cancers. It has also now become evident that intra-tumoural hypoxia facilitates cancer metastasis and reduces patient survival. In this study, we present data suggesting that hypoxia regulates the expression of P2RX7 in the primary tumour microenvironment; and importantly, inhibition with a selective antagonist (10mg/kg A740003) increased cancer cell death via apoptosis in a E0771/C57BL-6J syngeneic murine model. Furthermore, micro-computed tomography demonstrated reduced number of osteolytic lesions and lesion area following P2RX7 inhibition in absence of overt metastases by decreasing osteoclast numbers. We also demonstrate that activation of P2RX7 plays a role in the secretion of extracellular vesicles (EVs) from breast cancer cells. Mass-spectrometric analyses showed a distinct protein signature for EVs derived from hypoxic compared with normoxic cancer cells which elicit specific responses in bone cells that are associated with pre-metastatic niche formation. Thus, inhibiting P2RX7 provides a novel opportunity to preferentially target the hypoxic breast cancer cells preventing tumour progression and subsequent metastasis to bone


2021 ◽  
Author(s):  
Peng-wei Cao ◽  
Lei Liu ◽  
Zi-Han Li ◽  
Feng Cao ◽  
Fu-Bao Liu

Abstract Background: The role of N6-methyladenosine (m6A)-associated long-stranded non-coding RNA (lncRNA) in pancreatic cancer is unclear. Therefore, we analysed the characteristics and tumour microenvironment in pancreatic cancer and determined the value of m6A-related lncRNAs for prognosis and drug target prediction.Methods: An m6A-lncRNA co-expression network was constructed using The Cancer Genome Atlas database to screen m6A-related lncRNAs. Prognosis-related lncRNAs were screened using univariate Cox regression; patients were divided into high- and low-risk groups and randomised into training and test groups. In the training group, least absolute shrinkage and selection operator (LASSO) was used for regression analysis and to construct a prognostic model, which was validated in the test group. Tumour mutational burden (TMB), immune evasion, and immune function of risk genes were analysed using R; drug sensitivity and potential drugs were examined using the Genomics of Drug Sensitivity in Cancer database.Results: We screened 129 m6A-related lncRNAs; 17 prognosis-related m6A-related lncRNAs were obtained using multivariate analysis and three m6A-related lncRNAs (AC092171.5, MEG9, AC002091.1) were screened using LASSO regression. Survival rates were significantly higher (P < 0.05) in the low-risk than in the high-risk group. Risk score was an independent predictor affecting survival (P < 0.001), with the highest risk score being obtained by calculating the c-index. The TMB significantly differed between the high- and low-risk groups (P < 0.05). In the high- and low-risk groups, mutations were detected in 61 of 70 samples and 49 of 71 samples, respectively, with KRAS, TP53, and SMAD4 showing the highest mutation frequencies in both groups. A lower survival rate was observed in patients with a high versus low TMB. Immune function HLA, Cytolytic activity, and Inflammation-promoting, T cell co-inhibition, Check-point, and T cell co-stimulation significantly differed in different subgroups (P < 0.05). Immune evasion scores were significantly higher in the high-risk group than in the low-risk group. Eight sensitive drugs were screened: ABT.888, ATRA, AP.24534, AG.014699, ABT.263, axitinib, A.443654, and A.770041.Conclusions: We screened m6A-related lncRNAs using bioinformatics, constructed a prognosis-related model, explored TMB and immune function differences in pancreatic cancer, and identified potential therapeutic agents, providing a foundation for further studies of pancreatic cancer diagnosis and treatment.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Simran S. Kapoor ◽  
Dietmar M. W. Zaiss

Several types of tumours overexpress the Epidermal Growth Factor Receptor (EGFR) in either wild type or mutated form. These tumours are often highly aggressive and difficult to treat. The underlying mechanisms for this phenomenon have remained largely unresolved, but recent publications suggest two independent mechanisms that may contribute. According to one line of research, tumours that overexpress the EGFR grow autonomously and become “addicted” to growth factor signalling. Inhibition of this signal using EGFR inhibitors can, therefore, induce cell death in tumour cells and lead to tumour shrinkage. The other line of research, as highlighted by recent findings, suggests that the overexpression, specifically of mutant forms of the EGFR, may create an immune-suppressive and lymphocyte depleted microenvironment within tumours. Such a lymphocyte depleted microenvironment may explain the resistance of EGFR overexpressing cancers to tumour therapies, particularly to check-point inhibitor treatments. In this article, we discuss the recent data which support an immune modulatory effect of EGFR signalling and compare these published studies with the most recent data from The Cancer Genome Atlas (TCGA), in this way, dissecting possible underlying mechanisms. We thereby focus our study on how EGFR overexpression may lead to the local activation of TGFβ, and hence to an immune suppressive environment. Consequently, we define a novel concept of how the mitogenic and immune modulatory effects of EGFR overexpression may contribute to tumour resistance to immunotherapy, and how EGFR specific inhibitors could be used best to enhance the efficacy of tumour therapy.


Sign in / Sign up

Export Citation Format

Share Document