A multi-scale analysis of habitat selection in peripheral populations of the endangered Dupont’s Lark Chersophilus duponti

2016 ◽  
Vol 27 (3) ◽  
pp. 398-413 ◽  
Author(s):  
CRISTIAN PÉREZ-GRANADOS ◽  
GERMÁN M. LÓPEZ-IBORRA ◽  
JAVIER SEOANE

SummaryHabitat selection of endangered species in peripheral populations must be considered when designing effective conservation plans, as these populations tend to occupy atypical habitats where species-environment relationships are not well understood. We examined patterns of habitat use in peripheral populations of the endangered Dupont’s Lark Chersophilus duplonti using a multi-scale approach and assessed the spatiotemporal transferability of these models to test for their generality. Our results show that at microhabitat (circles of 50-m diameter used by the species versus random points) and macrohabitat (occupied/unoccupied squares of 1 ha) scales the species selected flat and non-forested areas, but at the microhabitat scale the cover of small shrubs was also important. Models developed at patch scale (occupied /unoccupied sites) identified only site size as an important predictor of species occurrence. Habitat models transferred successfully among sites and years, which suggests that these models and our recommendations may be extrapolated over a larger geographic area. A multi-scale approach was used for identifying conservation requirements at different spatial scales. At the patch scale our models confirm it is a priority to maintain or enlarge the extent of habitat patches to ensure the viability of the studied metapopulation. At the macrohabitat scale our results suggest that reducing tree density in low slope areas would be the most effective management action. At the microhabitat scale, encouraging the presence of small and medium-sized shrubs, by clearing certain scrubs (e.g. large brooms Genista spp. and rosemary Rosmarinus officinalis) or promoting traditional low-level extensive grazing, should increase the availability of high-quality habitats for the species, and thus the number of potential territories within a patch. These recommendations largely coincide with the ones given for core populations at specific scales elsewhere.

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


The Condor ◽  
2017 ◽  
Vol 119 (4) ◽  
pp. 641-658 ◽  
Author(s):  
Ho Yi Wan ◽  
Kevin McGarigal ◽  
Joseph L. Ganey ◽  
Valentin Lauret ◽  
Brad C. Timm ◽  
...  

2012 ◽  
Vol 23 (3) ◽  
pp. 344-359 ◽  
Author(s):  
ESTHER SEBASTIÁN-GONZÁLEZ ◽  
CRISTINA FUENTES ◽  
MARCOS FERRÁNDEZ ◽  
JOSÉ L. ECHEVARRÍAS ◽  
ANDY J. GREEN

SummaryUnderstanding habitat requirements is vital for developing successful management strategies for threatened species. In this study we analyse the habitat selection of two globally threatened waterbirds (Marbled Teal Marmaronetta angustirostris and White-headed Duck Oxyura leucocephala) coexisting in an internationally important wetland (El Hondo Natural Park, south-eastern Spain) at three spatial scales. We surveyed adults and broods of these species fortnightly during two consecutive years and we related density and presence of birds to several habitat variables. At a pond-selection scale, the density of both species was related to the surface area of the ponds, with Marbled Teal showing avoidance of medium-sized ponds, and White-headed Ducks strong selection for the largest ponds. Within ponds, Marbled Teal avoided open waters, and was mainly associated with Phragmites reedbeds, but also selected areas with saltmarsh and Scirpus vegetation, especially for brood-rearing. White-headed Duck made more use of deeper areas with open water, especially in winter, and Phragmites was the only emergent vegetation with which it associated. When breeding success was very high in 2000, strong creching of broods was observed in White-headed Duck, but not in Marbled Teal. In order to provide suitable habitat for both species, there is a need to maintain spatial diversity with a combination of large wetlands suitable for both species and small, vegetated ones suitable for the Marbled Teal.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3164 ◽  
Author(s):  
Jan Jedlikowski ◽  
Mattia Brambilla

BackgroundHabitat selection and its adaptive outcomes are crucial features for animal life-history strategies. Nevertheless, congruence between habitat preferences and breeding success has been rarely demonstrated, which may result from the single-scale evaluation of animal choices. As habitat selection is a complex multi-scale process in many groups of animal species, investigating adaptiveness of habitat selection in a multi-scale framework is crucial. In this study, we explore whether habitat preferences acting at different spatial scales enhance the fitness of bird species, and check the appropriateness of single vs. multi-scale models. We expected that variables found to be more important for habitat selection at individual scale(s), would coherently play a major role in affecting nest survival at the same scale(s).MethodsWe considered habitat preferences of two Rallidae species, little crake (Zapornia parva) and water rail (Rallus aquaticus), at three spatial scales (landscape, territory, and nest-site) and related them to nest survival. Single-scale versus multi-scale models (GLS and glmmPQL) were compared to check which model better described adaptiveness of habitat preferences. Consistency between the effect of variables on habitat selection and on nest survival was checked to investigate their adaptive value.ResultsIn both species, multi-scale models for nest survival were more supported than single-scale ones. In little crake, the multi-scale model indicated vegetation density and water depth at the territory scale, as well as vegetation height at nest-site scale, as the most important variables. The first two variables were among the most important for nest survival and habitat selection, and the coherent effects suggested the adaptive value of habitat preferences. In water rail, the multi-scale model of nest survival showed vegetation density at territory scale and extent of emergent vegetation within landscape scale as the most important ones, although we found a consistent effect with the habitat selection model (and hence evidence for adaptiveness) only for the former.DiscussionOur work suggests caution when interpreting adaptiveness of habitat preferences at a single spatial scale because such an approach may under- or over-estimate the importance of habitat factors. As an example, we found evidence only for a weak effect of water depth at territory scale on little crake nest survival; however, according to the multi-scale analysis, such effect turned out to be important and appeared highly adaptive. Therefore, multi-scale approaches to the study of adaptive explanations for habitat selection mechanisms should be promoted.


2013 ◽  
Vol 33 (20) ◽  
pp. 6470-6477 ◽  
Author(s):  
吴庆明 WU Qingming ◽  
邹红菲 ZOU Hongfei ◽  
金洪阳 JIN Hongyang ◽  
马建章 MA Jianzhang

2004 ◽  
Vol 10 (1) ◽  
pp. 121-135 ◽  
Author(s):  
Ari Nikula ◽  
Samuli Heikkinen ◽  
Eero Helle

2021 ◽  
Vol 36 (2) ◽  
pp. 455-474
Author(s):  
Eric Ash ◽  
David W. Macdonald ◽  
Samuel A. Cushman ◽  
Adisorn Noochdumrong ◽  
Tim Redford ◽  
...  

Abstract Context Species habitat suitability models rarely incorporate multiple spatial scales or functional shapes of a species’ response to covariates. Optimizing models for these factors may produce more robust, reliable, and informative habitat suitability models, which can be beneficial for the conservation of rare and endangered species, such as tigers (Panthera tigris). Objectives We provide the first formal assessment of the relative impacts of scale-optimization and shape-optimization on model performance and habitat suitability predictions. We explored how optimization influences conclusions regarding habitat selection and mapped probability of occurrence. Methods We collated environmental variables expected to affect tiger occurrence, calculating focal statistics and landscape metrics at spatial scales ranging from 250 m to 16 km. We then constructed a set of presence–absence generalized linear models including: (1) single-scale optimized models (SSO); (2) a multi-scale optimized model (MSO); (3) single-scale shape-optimized models (SSSO) and (4) a multi-scale- and shape-optimized model (MSSO). We compared performance and resulting prediction maps for top performing models. Results The SSO (16 km), SSSO (16 km), MSO, and MSSO models performed equally well (AUC > 0.9). However, these differed substantially in prediction and mapped habitat suitability, leading to different ecological understanding and potentially divergent conservation recommendations. Habitat selection was highly scale-dependent and the strongest relationships with environmental variables were at the broadest scales analysed. Modelling approach had a substantial influence in variable importance among top models. Conclusions Our results suggest that optimization of the scale of resource selection is crucial in modelling tiger habitat selection. However, in this analysis, shape-optimization did not improve model performance.


2014 ◽  
Vol 1 ◽  
pp. 71-79
Author(s):  
Steeves Buckland ◽  
Nik C. Cole ◽  
Ben Godsall ◽  
Javier Rodríguez-Pérez ◽  
Laura E. Gallagher ◽  
...  

2019 ◽  
Vol 83 (3) ◽  
pp. 679-693 ◽  
Author(s):  
Bryan G. Lamont ◽  
Kevin L. Monteith ◽  
Jerod A. Merkle ◽  
Tony W. Mong ◽  
Shannon E. Albeke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document