Skill Learning and Human Brain Evolution: An Experimental Approach

2015 ◽  
Vol 25 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Dietrich Stout ◽  
Nada Khreisheh

Increasing reliance on skill-intensive subsistence strategies appears to be a hallmark of human evolution, with wide-ranging implications for sociality, brain size, life-history and cognitive adaptations. These parameters describe a human technological niche reliant on efficient intergenerational reproduction of increasingly complex foraging techniques, including especially the production and effective use of tools. The archaeological record provides a valuable source of evidence for tracing the emergence of this modern human condition, but interpretation of this evidence remains challenging and controversial. Application of methods from psychology and neuroscience to Palaeolithic tool-making experiments offers new avenues for establishing empirical links between technological behaviours, neurocognitive substrates and archaeologically observable material residues. Here we review recent progress and highlight key challenges for the future.

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1399 ◽  
Author(s):  
Geraldine Zimmer-Bensch

Mammalian genomes encode tens of thousands of long-noncoding RNAs (lncRNAs), which are capable of interactions with DNA, RNA and protein molecules, thereby enabling a variety of transcriptional and post-transcriptional regulatory activities. Strikingly, about 40% of lncRNAs are expressed specifically in the brain with precisely regulated temporal and spatial expression patterns. In stark contrast to the highly conserved repertoire of protein-coding genes, thousands of lncRNAs have newly appeared during primate nervous system evolution with hundreds of human-specific lncRNAs. Their evolvable nature and the myriad of potential functions make lncRNAs ideal candidates for drivers of human brain evolution. The human brain displays the largest relative volume of any animal species and the most remarkable cognitive abilities. In addition to brain size, structural reorganization and adaptive changes represent crucial hallmarks of human brain evolution. lncRNAs are increasingly reported to be involved in neurodevelopmental processes suggested to underlie human brain evolution, including proliferation, neurite outgrowth and synaptogenesis, as well as in neuroplasticity. Hence, evolutionary human brain adaptations are proposed to be essentially driven by lncRNAs, which will be discussed in this review.


2016 ◽  
Vol 136 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Lei Shi ◽  
Enzhi Hu ◽  
Zhenbo Wang ◽  
Jiewei Liu ◽  
Jin Li ◽  
...  

Author(s):  
Geraldine Zimmer-Bensch

Mammalian genomes encode tens of thousands of long-noncoding RNAs (lncRNAs), which are capable of interactions with DNA, RNA and protein molecules, thereby enabling a variety of transcriptional and post-transcriptional regulatory activities. Strikingly, about 40% of lncRNAs are expressed specifically in the brain in precisely regulated temporal and spatial expression patterns. In stark contrast to the highly conserved repertoire of protein-coding genes, thousands of new lncRNAs have appeared during primate nervous system evolution with hundreds of human-specific lncRNAs. Their evolvable nature and the myriad of potential functions make lncRNAs ideal candidates for drivers of human brain evolution. The human brain displays the largest relative volume of any animal species and the most remarkable cognitive abilities. In addition to brain size, structural reorganization and adaptive changes represent crucial hallmarks of human brain evolution. LncRNAs are increasingly reported to be involved in neurodevelopmental processes including proliferation, neurite outgrowth and synaptogenesis, as well as in neuroplasticity, suggested to underlie human brain evolution. Hence, evolutionary human brain adaptations are proposed to be essentially driven by lncRNAs, which will be discussed in this review.


2012 ◽  
Vol 367 (1599) ◽  
pp. 2130-2140 ◽  
Author(s):  
Susanne Shultz ◽  
Emma Nelson ◽  
Robin I. M. Dunbar

As only limited insight into behaviour is available from the archaeological record, much of our understanding of historical changes in human cognition is restricted to identifying changes in brain size and architecture. Using both absolute and residual brain size estimates, we show that hominin brain evolution was likely to be the result of a mix of processes; punctuated changes at approximately 100 kya, 1 Mya and 1.8 Mya are supplemented by gradual within-lineage changes in Homo erectus and Homo sapiens sensu lato . While brain size increase in Homo in Africa is a gradual process, migration of hominins into Eurasia is associated with step changes at approximately 400 kya and approximately 100 kya. We then demonstrate that periods of rapid change in hominin brain size are not temporally associated with changes in environmental unpredictability or with long-term palaeoclimate trends. Thus, we argue that commonly used global sea level or Indian Ocean dust palaeoclimate records provide little evidence for either the variability selection or aridity hypotheses explaining changes in hominin brain size. Brain size change at approximately 100 kya is coincident with demographic change and the appearance of fully modern language. However, gaps remain in our understanding of the external pressures driving encephalization, which will only be filled by novel applications of the fossil, palaeoclimatic and archaeological records.


2006 ◽  
Vol 29 (1) ◽  
pp. 15-16 ◽  
Author(s):  
R. I. M. Dunbar

Striedter's account of human brain evolution fails on two key counts. First, he confuses developmental constraints with selection explanations in the initial jump in hominid brain size around two MYA. Second, he misunderstands the Machiavellian Intelligence explanation.


2021 ◽  
Vol 84 (4) ◽  
pp. 467-485
Author(s):  
Gary Clark ◽  
Maciej Henneberg

Abstract In this article we provide evidence that evolutionary pressures altered the cranial base and the mastoid region of the temporal bone more than the calvaria in the transition from H. erectus to H. sapiens. This process seems to have resulted in the evolution of more globular skull shape – but not as a result of expansion of the brain in the parietal regions but of reduction of the cranial base and the mastoid region relative to the parietals. Consequently, we argue that expansion of the parietals seems to be unrelated to brain evolution, but is more a by-product of reduction in other regions of the skull, reduction that may be related to dietary factors. Additionally, these findings suggest that cognitive and behavioural modernity may not necessarily be dependent on brain shape. Also, it cannot be attributed to the change in brain size because H. erectus and modern human cranial capacities overlap substantially. Consequently, we suggest H. erectus possessed the full suite of cognitive adaptations characteristic of modern humans without possessing a globular skull with flared parietals. Our results also support the theory that paedomorphic morphogenesis of the skull was important in the transition from H. erectus to H. sapiens and that such changes may be related to both dietary factors and social evolution.


2015 ◽  
Author(s):  
Fabian Zimmer ◽  
Stephen H Montgomery

The expansion of DUF1220 domain copy number during human evolution is a dramatic example of rapid and repeated domain duplication. However, the phenotypic relevance of DUF1220 dosage is unknown. Although patterns of expression, homology and disease associations suggest a role in cortical development, this hypothesis has not been robustly tested using phylogenetic methods. Here, we estimate DUF1220 domain counts across 12 primate genomes using a nucleotide Hidden Markov Model. We then test a series of hypotheses designed to examine the potential evolutionary significance of DUF1220 copy number expansion. Our results suggest a robust association with brain size, and more specifically neocortex volume. In contradiction to previous hypotheses we find a strong association with postnatal brain development, but not with prenatal brain development. Our results provide further evidence of a conserved association between specific loci and brain size across primates, suggesting human brain evolution occurred through a continuation of existing processes.


2008 ◽  
Vol 11 (6) ◽  
pp. 683-685 ◽  
Author(s):  
Wim HM Saris ◽  
Steven B Heymsfield ◽  
William J Evans

Brain ◽  
2019 ◽  
Vol 142 (12) ◽  
pp. 3991-4002 ◽  
Author(s):  
Martijn P van den Heuvel ◽  
Lianne H Scholtens ◽  
Siemon C de Lange ◽  
Rory Pijnenburg ◽  
Wiepke Cahn ◽  
...  

See Vértes and Seidlitz (doi:10.1093/brain/awz353) for a scientific commentary on this article. Is schizophrenia a by-product of human brain evolution? By comparing the human and chimpanzee connectomes, van den Heuvel et al. demonstrate that connections unique to the human brain show greater involvement in schizophrenia pathology. Modifications in service of higher-order brain functions may have rendered the brain more vulnerable to dysfunction.


Sign in / Sign up

Export Citation Format

Share Document