scholarly journals Hominin cognitive evolution: identifying patterns and processes in the fossil and archaeological record

2012 ◽  
Vol 367 (1599) ◽  
pp. 2130-2140 ◽  
Author(s):  
Susanne Shultz ◽  
Emma Nelson ◽  
Robin I. M. Dunbar

As only limited insight into behaviour is available from the archaeological record, much of our understanding of historical changes in human cognition is restricted to identifying changes in brain size and architecture. Using both absolute and residual brain size estimates, we show that hominin brain evolution was likely to be the result of a mix of processes; punctuated changes at approximately 100 kya, 1 Mya and 1.8 Mya are supplemented by gradual within-lineage changes in Homo erectus and Homo sapiens sensu lato . While brain size increase in Homo in Africa is a gradual process, migration of hominins into Eurasia is associated with step changes at approximately 400 kya and approximately 100 kya. We then demonstrate that periods of rapid change in hominin brain size are not temporally associated with changes in environmental unpredictability or with long-term palaeoclimate trends. Thus, we argue that commonly used global sea level or Indian Ocean dust palaeoclimate records provide little evidence for either the variability selection or aridity hypotheses explaining changes in hominin brain size. Brain size change at approximately 100 kya is coincident with demographic change and the appearance of fully modern language. However, gaps remain in our understanding of the external pressures driving encephalization, which will only be filled by novel applications of the fossil, palaeoclimatic and archaeological records.

Antiquity ◽  
2021 ◽  
pp. 1-3
Author(s):  
Ian Tattersall

Early in their book A story of us, the evolutionary psychologists Leslie Newson and Peter Richerson remark of very early hominins that “we can't know what it is like to experience life with a brain so very different from our own” (p. 34). These words neatly encapsulate an unfortunate reality that confronts anyone who tries to understand or reconstruct the evolution of human cognition: we humans are so completely imprisoned within our own cognitive style as to be incapable of fully imagining what was going on in the minds of extinct hominins who were behaviourally highly sophisticated, but who nonetheless did not think like us—which basically includes all of them. The reason for this difficulty is that we modern Homo sapiens are entirely unique in the living world in the way in which we manipulate information about our exterior and internal worlds. We do this symbolically, which is to say that we deconstruct those worlds into vocabularies of mental symbols that we can then combine and recombine in our minds, according to rules, to make statements not only about the world as it is, but as it might be. And evidence in the archaeological record for the routinely symbolic behaviours that are our best proxies for the apprehension of the world in this fashion is at best very sparse indeed prior—and even for some time subsequent—to the initial appearance of Homo sapiens.


2006 ◽  
Vol 29 (1) ◽  
pp. 19-20 ◽  
Author(s):  
Juan Pascual-Leone

Using neoPiagetian theory of mental attention (or working memory), I task-analyze two complex performances of great apes and one symbolic performance (funeral burials) of early Homo sapiens. Relating results to brain size growth data, I derive estimates of mental attention for great apes, Homo erectus, Neanderthals, and modern Homo sapiens, and use children's cognitive development as reference. This heuristic model seems consistent with research.


2016 ◽  
Vol 28 (3-4) ◽  
pp. 118-131
Author(s):  
L. Albessard ◽  
D. Grimaud-Hervé ◽  
A. Balzeau

Cranial anatomical features play a prominent part in the definition of extinctHomotaxa and in species identification in fossils. Thus, knowledge of cranial morphology considered within its geochronological framework is essential to the understanding of the evolution, chronology, and dispersal of the genusHomo. The brain is also a valuable object of study for research on human evolution, because of features such as its large size and a high encephalization quotient in someHomospecies, as well as the complexity of human cognition. However, the joint evolution of endo- and ectocranial anatomies is still little studied, and landmarks representing cerebral anatomy rather than inner cranial bone anatomy are still rarely used. This exploratory piece of research examines endo- and ectocranial profiles in samples representing 3Homotaxa:Homo sapiens(fossil and recent specimens),Homo erectus, andHomo neanderthalensis. We used 2D geometric morphometrics to analyze the shape of the endo- and ectocranial vaults, as well as the relationships between selected anatomical features such as the extension of lobes and bones. The shapes of the vaults were computed using both fixed landmarks and sliding semi-landmarks. The fixed landmarks used for the endocranium were chosen in order to represent cerebral anatomy, in that they are defined by the imprints left by brain structures on the inner bone surface of the skull, and not by bony structures such as the inferior side of cranial sutures. Among other results, we have shown or confirmed specific features in the shape of the endocranium inHomo sapiens, as well as a few differences in the patterns of interplay between lobes and bones. These data, and any further results obtained with larger samples, may provide new insights into the development of the endocranial anatomical pattern inHomo sapiensand of its variability.


2006 ◽  
Vol 29 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Georg F. Striedter

Brain evolution is a complex weave of species similarities and differences, bound by diverse rules and principles. This book is a detailed examination of these principles, using data from a wide array of vertebrates but minimizing technical details and terminology. It is written for advanced undergraduates, graduate students, and more senior scientists who already know something about “the brain,” but want a deeper understanding of how diverse brains evolved. The book's central theme is that evolutionary changes in absolute brain size tend to correlate with many other aspects of brain structure and function, including the proportional size of individual brain regions, their complexity, and their neuronal connections. To explain these correlations, the book delves into rules of brain development and asks how changes in brain structure impact function and behavior. Two chapters focus specifically on how mammal brains diverged from other brains and how Homo sapiens evolved a very large and “special” brain.


2015 ◽  
Vol 25 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Dietrich Stout ◽  
Nada Khreisheh

Increasing reliance on skill-intensive subsistence strategies appears to be a hallmark of human evolution, with wide-ranging implications for sociality, brain size, life-history and cognitive adaptations. These parameters describe a human technological niche reliant on efficient intergenerational reproduction of increasingly complex foraging techniques, including especially the production and effective use of tools. The archaeological record provides a valuable source of evidence for tracing the emergence of this modern human condition, but interpretation of this evidence remains challenging and controversial. Application of methods from psychology and neuroscience to Palaeolithic tool-making experiments offers new avenues for establishing empirical links between technological behaviours, neurocognitive substrates and archaeologically observable material residues. Here we review recent progress and highlight key challenges for the future.


2021 ◽  
pp. 1-13
Author(s):  
Michelangelo Bisconti ◽  
Riccardo Daniello ◽  
Piero Damarco ◽  
Giandonato Tartarelli ◽  
Marco Pavia ◽  
...  

Baleen whales are considered underencephalized mammals due to their reduced brain size with respect to their body size (encephalization quotient [EQ] &#x3c;&#x3c; 1). Despite their low EQ, mysticetes exhibit complex behavioral patterns in terms of motor abilities, vocal repertoire, and cultural learning. Very scarce information is available about the morphological evolution of the brain in this group; this makes it difficult to investigate the historical changes in brain shape and size in order to relate the origin of the complex mysticete behavioral repertoire to the evolution of specific neural substrates. Here, the first description of the virtual endocast of a fossil balaenopterid species, <i>Marzanoptera tersillae</i> from the Italian Pliocene, reveals an EQ of around 3, which is exceptional for baleen whales. The endocast showed a morphologically different organization of the brain in this fossil whale as the cerebral hemispheres are anteroposteriorly shortened, the cerebellum lacks the posteromedial expansion of the cerebellar hemispheres, and the cerebellar vermis is unusually reduced. The comparative reductions of the cerebral and cerebellar hemispheres suggest that the motor behavior of <i>M. tersillae</i> probably was less sophisticated than that exhibited by the extant rorqual and humpback species. The presence of an EQ value in this fossil species that is around 10 times higher than that of extant mysticetes opens new questions about brain evolution and provides new, invaluable information about the evolutionary path of morphological and size change in the brain of baleen whales.


2017 ◽  
Author(s):  
William H. Calvin

AbstractHominin procedures for fire-starting, sharpening rocks, and softening roots by pounding or chopping require sustained attention for hours; shade is sought in the brush fringe bordering a grassland. Clustering these more versatile adults, while others are away hunting and gathering, provides a setup for assortative mating. This can lengthen attention span, enhance versatility and, with it, brain size. The rate of enlargement is accelerated by a boom-and-bust cycle in their meat supply, predicting the observed initiation of enlargement at −2.3 myr in the Rift Valley once boom-prone grazers evolved from the mixed feeders. Several months after lightning created a burn scar back in the brush, the new grassland enables a population boom for those grazers that discover it. Several decades later as brush regrows, they are pushed back. Their hominin followers, wicked in from the grassland’s shady fringe, boom together with the burn-scar grazers. They then follow their meat supply back to the main population. This creates an amplifying feedback loop, shifting Homo gene frequencies centrally. Brush fires are so frequent that the cosmic ray mutation rate becomes enlargement’s rate-limiter, consistent with 460 cm3/myr remaining constant during many climate shifts. The apparent tripling of enlargement rate in the last 0.2 myr vanished when the non-ancestors were omitted. Asian Homo erectus enlargement lags the ancestral trend line by 0.5 myr. Neanderthals lag somewhat less but have a late size spurt after the −70 kyr Homo sapiens Out of Africa, suggesting enlargement genes were acquired via interbreeding.


2021 ◽  
Vol 84 (4) ◽  
pp. 467-485
Author(s):  
Gary Clark ◽  
Maciej Henneberg

Abstract In this article we provide evidence that evolutionary pressures altered the cranial base and the mastoid region of the temporal bone more than the calvaria in the transition from H. erectus to H. sapiens. This process seems to have resulted in the evolution of more globular skull shape – but not as a result of expansion of the brain in the parietal regions but of reduction of the cranial base and the mastoid region relative to the parietals. Consequently, we argue that expansion of the parietals seems to be unrelated to brain evolution, but is more a by-product of reduction in other regions of the skull, reduction that may be related to dietary factors. Additionally, these findings suggest that cognitive and behavioural modernity may not necessarily be dependent on brain shape. Also, it cannot be attributed to the change in brain size because H. erectus and modern human cranial capacities overlap substantially. Consequently, we suggest H. erectus possessed the full suite of cognitive adaptations characteristic of modern humans without possessing a globular skull with flared parietals. Our results also support the theory that paedomorphic morphogenesis of the skull was important in the transition from H. erectus to H. sapiens and that such changes may be related to both dietary factors and social evolution.


2020 ◽  
Vol 375 (1803) ◽  
pp. 20190495 ◽  
Author(s):  
Natalie Uomini ◽  
Joanna Fairlie ◽  
Russell D. Gray ◽  
Michael Griesser

Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent–offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles’ cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals’.


Sign in / Sign up

Export Citation Format

Share Document