On Köthe sequence spaces and linear logic

2002 ◽  
Vol 12 (5) ◽  
pp. 579-623 ◽  
Author(s):  
THOMAS EHRHARD

We present a category of locally convex topological vector spaces that is a model of propositional classical linear logic and is based on the standard concept of Köthe sequence spaces. In this setting, the ‘of course’ connective of linear logic has a quite simple structure of a commutative Hopf algebra. The co-Kleisli category of this linear category is a cartesian closed category of entire mappings. This work provides a simple setting in which typed λ-calculus and differential calculus can be combined; we give a few examples of computations.

Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2008 ◽  
Vol 50 (2) ◽  
pp. 271-288
Author(s):  
HELGE GLÖCKNER

AbstractThe General Curve Lemma is a tool of Infinite-Dimensional Analysis that enables refined studies of differentiability properties of maps between real locally convex spaces to be made. In this article, we generalize the General Curve Lemma in two ways. First, we remove the condition of local convexity in the real case. Second, we adapt the lemma to the case of curves in topological vector spaces over ultrametric fields.


1972 ◽  
Vol 14 (1) ◽  
pp. 105-118
Author(s):  
B. D. Craven

If A and B are locally convex topological vector spaces, and B has certain additional structure, then the space L(A, B) of all continuous linear mappings of A into B is characterized, within isomorphism, as the inductive limit of a family of spaces, whose elements are functions, or measures. The isomorphism is topological if L(A, B) is given a particular topology, defined in terms of the seminorms which define the topologies of A and B. The additional structure on B enables L(A, B) to be constructed, using the duals of the normed spaces obtained by giving A the topology of each of its seminorms separately.


Author(s):  
Thomas W. Reiland

Interval-Lipschitz mappings between topological vector spaces are defined and compared with other Lipschitz-type operators. A theory of generalized gradients is presented when both spaces are locally convex and the range space is an order complete vector lattice. Sample applications to the theory of nonsmooth optimization are given.


1998 ◽  
Vol 63 (4) ◽  
pp. 1413-1436 ◽  
Author(s):  
R. F. Blute ◽  
P. J. Scott

AbstractWe present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic, Yetter's cyclic linear logic (CyLL). The semantics is obtained by interpreting proofs as dinatural transformations on a category of topological vector spaces, these transformations being equivariant under certain actions of a noncocommutative Hopf algebra called the shuffle algebra Multiplicative sequents are assigned a vector space of such dinaturals, and we show that this space has as a basis the denotations of cut-free proofs in CyLL + MIX. This can be viewed as a fully faithful representation of a free *-autonomous category, canonically enriched over vector spaces.This paper is a natural extension of the authors' previous work, “Linear Läuchli Semantics”, where a similar theorem is obtained for the commutative logic MLL + MIX. In that paper, we interpret proofs as dinaturals which are invariant under certain actions of the additive group of integers. Here we also present a simplification of that work by showing that the invariance criterion is actually a consequence of dinaturality. The passage from groups to Hopf algebras in this paper corresponds to the passage from commutative to noncommutative logic. However, in our noncommutative setting, one must still keep the invariance condition on dinaturals.


1971 ◽  
Vol 14 (1) ◽  
pp. 119-120 ◽  
Author(s):  
Robert H. Lohman

A well-known embedding theorem of Banach and Mazur [1, p. 185] states that every separable Banach space is isometrically isomorphic to a subspace of C[0, 1], establishing C[0, 1] as a universal separable Banach space. The embedding theorem one encounters in a course in topological vector spaces states that every Hausdorff locally convex space (l.c.s.) is topologically isomorphic to a subspace of a product of Banach spaces.


2000 ◽  
Vol 13 (1) ◽  
pp. 73-75
Author(s):  
Ram U. Verma

We present the solvability of a class of nonlinear variational inequalities involving pseudomonotone operators in a locally convex Hausdorff topological vector spaces setting. The obtained result generalizes similar variational inequality problems on monotone operators.


1994 ◽  
Vol 49 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Kok-Keong Tan ◽  
Xian-Zhi Yuan

The purpose of this note is to give a general existence theorem for maximal elements for a new type of preference correspondences which are u-majorised. As an application, an existence theorem of equilibria for a qualitative game is obtained in which the preferences are u-majorised with an arbitrary (countable or uncountable) set of players and without compactness assumption on their domains in Hausdorff locally convex topological vector spaces.


Sign in / Sign up

Export Citation Format

Share Document