Exact and approximate controllability for distributed parameter systems

Acta Numerica ◽  
1994 ◽  
Vol 3 ◽  
pp. 269-378 ◽  
Author(s):  
R. Glowinski ◽  
J.L. Lions

We consider a system whose state is given by the solution y to a Partial Differential Equation (PDE) of evolution, and which contains control functions, denoted by v.


2020 ◽  
Vol 70 (3) ◽  
pp. 34-44
Author(s):  
Kamen Perev

The paper considers the problem of distributed parameter systems modeling. The basic model types are presented, depending on the partial differential equation, which determines the physical processes dynamics. The similarities and the differences with the models described in terms of ordinary differential equations are discussed. A special attention is paid to the problem of heat flow in a rod. The problem set up is demonstrated and the methods of its solution are discussed. The main characteristics from a system point of view are presented, namely the Green function and the transfer function. Different special cases for these characteristics are discussed, depending on the specific partial differential equation, as well as the initial conditions and the boundary conditions.



2014 ◽  
Vol 555 ◽  
pp. 222-231 ◽  
Author(s):  
Mihaela Ligia Ungureşan ◽  
Vlad Mureşan

This paper presents the numerical simulation of a control system, with PID algorithm, for a process modeled through a partial differential equation of second order (PDE II.2), with respect to time (t) and to a spatial variable (p). Because these types of control systems are less usual, this paper develops a case study, with a program run on the computer. The details of using the PID control are pointed out, for an example of a system which contains a process with PDE II.2 structure.





Sign in / Sign up

Export Citation Format

Share Document