scholarly journals Component Games on Regular Graphs

2013 ◽  
Vol 23 (1) ◽  
pp. 75-89
Author(s):  
RANI HOD ◽  
ALON NAOR

We study the (1:b) Maker–Breaker component game, played on the edge set of ad-regular graph. Maker's aim in this game is to build a large connected component, while Breaker's aim is to prevent him from doing so. For all values of Breaker's biasb, we determine whether Breaker wins (on anyd-regular graph) or Maker wins (on almost everyd-regular graph) and provide explicit winning strategies for both players.To this end, we prove an extension of a theorem of Gallai, Hasse, Roy and Vitaver about graph orientations without long directed simple paths.

Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


2021 ◽  
pp. 97-104
Author(s):  
M. B. Abrosimov ◽  
◽  
S. V. Kostin ◽  
I. V. Los ◽  
◽  
...  

In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2. All primitive regular graphs with exponent 2, except for the complete one, also have diameter d = 2. The following values were obtained for primitive regular graphs with exponent 2: np2 = 3, np3 = 4, np4 = 11.


1966 ◽  
Vol 18 ◽  
pp. 1091-1094 ◽  
Author(s):  
Clark T. Benson

In (3) Tutte showed that the order of a regular graph of degree d and even girth g > 4 is greater than or equal toHere the girth of a graph is the length of the shortest circuit. It was shown in (2) that this lower bound cannot be attained for regular graphs of degree > 2 for g ≠ 6, 8, or 12. When this lower bound is attained, the graph is called minimal. In a group-theoretic setting a similar situation arose and it was noticed by Gleason that minimal regular graphs of girth 12 could be constructed from certain groups. Here we construct these graphs making only incidental use of group theory. Also we give what is believed to be an easier construction of minimal regular graphs of girth 8 than is given in (2). These results are contained in the following two theorems.


10.37236/3752 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Matthew Kwan ◽  
David Wind

Let $d\geq 3$ be a fixed integer.   We give an asympotic formula for the expected number of spanning trees in a uniformly random $d$-regular graph with $n$ vertices. (The asymptotics are as $n\to\infty$, restricted to even $n$ if $d$ is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) $d$. Numerical evidence is presented which supports our conjecture.


10.37236/1760 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Arne Hoffmann ◽  
Lutz Volkmann

In this note we examine the connection between vertices of high eccentricity and the existence of $k$-factors in regular graphs. This leads to new results in the case that the radius of the graph is small ($\leq 3$), namely that a $d$-regular graph $G$ has all $k$-factors, for $k|V(G)|$ even and $k\le d$, if it has at most $2d+2$ vertices of eccentricity $>3$. In particular, each regular graph $G$ of diameter $\leq3$ has every $k$-factor, for $k|V(G)|$ even and $k\le d$.


Author(s):  
Gary Chartrand ◽  
Sergio Ruiz ◽  
Curtiss E. Wall

AbstractA near 1-factor of a graph of order 2n ≧ 4 is a subgraph isomorphic to (n − 2) K2 ∪ P3 ∪ K1. Wallis determined, for each r ≥ 3, the order of a smallest r-regular graph of even order without a 1-factor; while for each r ≧ 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular, (r − 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs without near 1-factors. It is known that every connected, cubic graph with less than six bridges has a near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near 1-factor is determined.


1967 ◽  
Vol 19 ◽  
pp. 644-648 ◽  
Author(s):  
William G. Brown

ƒ(k, 5) is defined to be the smallest integer n for which there exists a regular graph of valency k and girth 5, having n vertices. In (3) it was shown that1.1Hoffman and Singleton proved in (4) that equality holds in the lower bound of (1.1) only for k = 2, 3, 7, and possibly 57. Robertson showed in (6) that ƒ(4, 5) = 19 and constructed the unique minimal graph.


2019 ◽  
Vol 63 (9) ◽  
pp. 1406-1416 ◽  
Author(s):  
Mei-Mei Gu ◽  
Rong-Xia Hao ◽  
Eddie Cheng

Abstract Most graphs have this property: after removing a linear number of vertices from a graph, the surviving graph is either connected or consists of a large connected component and small components containing a small number of vertices. This property can be applied to derive fault-tolerance related network parameters: extra edge connectivity and component edge connectivity. Using this general property, we obtained the $h$-extra edge connectivity and $(h+2)$-component edge connectivity of augmented cubes, Cayley graphs generated by transposition trees, complete cubic networks (including hierarchical cubic networks), generalized exchanged hypercubes (including exchanged hypercubes) and dual-cube-like graphs (including dual cubes).


2000 ◽  
Vol 9 (3) ◽  
pp. 241-263 ◽  
Author(s):  
ALAN M. FRIEZE ◽  
LEI ZHAO

Given a graph G = (V, E) and a set of κ pairs of vertices in V, we are interested in finding, for each pair (ai, bi), a path connecting ai to bi such that the set of κ paths so found is edge-disjoint. (For arbitrary graphs the problem is [Nscr ][Pscr ]-complete, although it is in [Pscr ] if κ is fixed.)We present a polynomial time randomized algorithm for finding edge-disjoint paths in the random regular graph Gn,r, for sufficiently large r. (The graph is chosen first, then an adversary chooses the pairs of end-points.) We show that almost every Gn,r is such that all sets of κ = Ω(n/log n) pairs of vertices can be joined. This is within a constant factor of the optimum.


2010 ◽  
Vol 02 (04) ◽  
pp. 643-654 ◽  
Author(s):  
MAXIM BABENKO ◽  
ALEXEY GUSAKOV ◽  
ILYA RAZENSHTEYN

A 2-matching in an undirected graph G = (VG, EG) is a function x: EG → {0, 1, 2} such that for each node v ∈ VG the sum of values x(e) for all edges e incident to v does not exceed 2. The size of x is the sum ∑e x(e). If {e ∈ EG|x(e) ≠ 0} contains no triangles then x is called triangle-free. Cornuéjols and Pulleyblank devised a combinatorial O(mn)-algorithm that finds a maximum triangle free 2-matching of size (hereinafter n ≔ |VG|, m ≔ |EG|) and also established a min-max theorem. We claim that this approach is, in fact, superfluous by demonstrating how these results may be obtained directly from the Edmonds–Gallai decomposition. Applying the algorithm of Micali and Vazirani we are able to find a maximum triangle-free 2-matching in [Formula: see text] time. Also we give a short self-contained algorithmic proof of the min-max theorem. Next, we consider the case of regular graphs. It is well-known that every regular graph admits a perfect 2-matching. One can easily strengthen this result and prove that every d-regular graph (for d ≥ 3) contains a perfect triangle-free 2-matching. We give the following algorithms for finding a perfect triangle-free 2-matching in a d-regular graph: an O(n)-algorithm for d = 3, an O(m + n3/2)-algorithm for d = 2k(k ≥ 2), and an O(n2)-algorithm for d = 2k + 1(k ≥ 2). We also prove that there exists a constant c > 1 such that every 3-regular graph contains at least cn perfect triangle-free 2-matchings.


Sign in / Sign up

Export Citation Format

Share Document