On the Non-Existence of a Type of Regular Graphs of Girth 5

1967 ◽  
Vol 19 ◽  
pp. 644-648 ◽  
Author(s):  
William G. Brown

ƒ(k, 5) is defined to be the smallest integer n for which there exists a regular graph of valency k and girth 5, having n vertices. In (3) it was shown that1.1Hoffman and Singleton proved in (4) that equality holds in the lower bound of (1.1) only for k = 2, 3, 7, and possibly 57. Robertson showed in (6) that ƒ(4, 5) = 19 and constructed the unique minimal graph.

1966 ◽  
Vol 18 ◽  
pp. 1091-1094 ◽  
Author(s):  
Clark T. Benson

In (3) Tutte showed that the order of a regular graph of degree d and even girth g > 4 is greater than or equal toHere the girth of a graph is the length of the shortest circuit. It was shown in (2) that this lower bound cannot be attained for regular graphs of degree > 2 for g ≠ 6, 8, or 12. When this lower bound is attained, the graph is called minimal. In a group-theoretic setting a similar situation arose and it was noticed by Gleason that minimal regular graphs of girth 12 could be constructed from certain groups. Here we construct these graphs making only incidental use of group theory. Also we give what is believed to be an easier construction of minimal regular graphs of girth 8 than is given in (2). These results are contained in the following two theorems.


2010 ◽  
Vol 83 (1) ◽  
pp. 87-95
Author(s):  
KA HIN LEUNG ◽  
VINH NGUYEN ◽  
WASIN SO

AbstractThe expansion constant of a simple graph G of order n is defined as where $E(S, \overline {S})$ denotes the set of edges in G between the vertex subset S and its complement $\overline {S}$. An expander family is a sequence {Gi} of d-regular graphs of increasing order such that h(Gi)>ϵ for some fixed ϵ>0. Existence of such families is known in the literature, but explicit construction is nontrivial. A folklore theorem states that there is no expander family of circulant graphs only. In this note, we provide an elementary proof of this fact by first estimating the second largest eigenvalue of a circulant graph, and then employing Cheeger’s inequalities where G is a d-regular graph and λ2(G) denotes the second largest eigenvalue of G. Moreover, the associated equality cases are discussed.


2008 ◽  
Vol 17 (3) ◽  
pp. 389-410 ◽  
Author(s):  
CARLOS HOPPEN ◽  
NICHOLAS WORMALD

An induced forest of a graph G is an acyclic induced subgraph of G. The present paper is devoted to the analysis of a simple randomized algorithm that grows an induced forest in a regular graph. The expected size of the forest it outputs provides a lower bound on the maximum number of vertices in an induced forest of G. When the girth is large and the degree is at least 4, our bound coincides with the best bound known to hold asymptotically almost surely for random regular graphs. This results in an alternative proof for the random case.


10.37236/6015 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Tatiana Baginová Jajcayová ◽  
Slobodan Filipovski ◽  
Robert Jajcay

The well-known Moore bound $M(k,g)$ serves as a universal lower bound for the order of $k$-regular graphs of girth $g$. The excess $e$ of a $k$-regular graph $G$ of girth $g$ and order $n$ is the difference between its order $n$ and the corresponding Moore bound, $e=n - M(k,g) $. We find infinite families of parameters $(k,g)$, $g$ even, for which we show that the excess of any $k$-regular graph of girth $g$ is larger than $4$. This yields new improved lower bounds on the order of $k$-regular graphs of girth $g$ of smallest possible order; the so-called $(k,g)$-cages. We also show that the excess of the smallest $k$-regular graphs of girth $g$ can be arbitrarily large for a restricted family of $(k,g)$-graphs satisfying a very natural additional structural property.


10.37236/431 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Hongliang Lu

Let $r$ and $m$ be two integers such that $r\geq m$. Let $H$ be a graph with order $|H|$, size $e$ and maximum degree $r$ such that $2e\geq |H|r-m$. We find a best lower bound on spectral radius of graph $H$ in terms of $m$ and $r$. Let $G$ be a connected $r$-regular graph of order $|G|$ and $ k < r$ be an integer. Using the previous results, we find some best upper bounds (in terms of $r$ and $k$) on the third largest eigenvalue that is sufficient to guarantee that $G$ has a $k$-factor when $k|G|$ is even. Moreover, we find a best bound on the second largest eigenvalue that is sufficient to guarantee that $G$ is $k$-critical when $k|G|$ is odd. Our results extend the work of Cioabă, Gregory and Haemers [J. Combin. Theory Ser. B, 1999] who obtained such results for 1-factors.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


2021 ◽  
pp. 97-104
Author(s):  
M. B. Abrosimov ◽  
◽  
S. V. Kostin ◽  
I. V. Los ◽  
◽  
...  

In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2. All primitive regular graphs with exponent 2, except for the complete one, also have diameter d = 2. The following values were obtained for primitive regular graphs with exponent 2: np2 = 3, np3 = 4, np4 = 11.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


Sign in / Sign up

Export Citation Format

Share Document