Adding Edges to Increase the Chromatic Number of a Graph

2016 ◽  
Vol 25 (4) ◽  
pp. 592-594
Author(s):  
ALEXANDR KOSTOCHKA ◽  
JAROSLAV NEŠETŘIL

If n ⩾ k + 1 and G is a connected n-vertex graph, then one can add $\binom{k}{2}$ edges to G so that the resulting graph contains the complete graph Kk+1. This yields that for any connected graph G with at least k + 1 vertices, one can add $\binom{k}{2}$ edges to G so that the resulting graph has chromatic number > k. A long time ago, Bollobás suggested that for every k ⩾ 3 there exists a k-chromatic graph Gk such that after adding to it any $\binom{k}{2}$ − 1 edges, the chromatic number of the resulting graph is still k. In this note we prove this conjecture.

2010 ◽  
Vol 02 (02) ◽  
pp. 207-211 ◽  
Author(s):  
YUEHUA BU ◽  
QIONG LI ◽  
SHUIMING ZHANG

The equitable chromatic number χe(G) of a graph G is the smallest integer k for which G has a proper k-coloring such that the number of vertices in any two color classes differ by at most one. In 1973, Meyer conjectured that the equitable chromatic number of a connected graph G, which is neither a complete graph nor an odd cycle, is at most Δ(G). We prove that this conjecture holds for 2-degenerate graphs with Δ(G) ≥ 5 and plane graphs without 3, 4 and 5 cycles.


10.37236/682 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Ararat Harutyunyan ◽  
Bojan Mohar

Brooks' Theorem states that a connected graph $G$ of maximum degree $\Delta$ has chromatic number at most $\Delta$, unless $G$ is an odd cycle or a complete graph. A result of Johansson shows that if $G$ is triangle-free, then the chromatic number drops to $O(\Delta / \log \Delta)$. In this paper, we derive a weak analog for the chromatic number of digraphs. We show that every (loopless) digraph $D$ without directed cycles of length two has chromatic number $\chi(D) \leq (1-e^{-13}) \tilde{\Delta}$, where $\tilde{\Delta}$ is the maximum geometric mean of the out-degree and in-degree of a vertex in $D$, when $\tilde{\Delta}$ is sufficiently large. As a corollary it is proved that there exists an absolute constant $\alpha < 1$ such that $\chi(D) \leq \alpha (\tilde{\Delta} + 1)$ for every $\tilde{\Delta} > 2$.


10.37236/7469 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Marlo Eugster ◽  
Frank Mousset

In 1995, Erdös and Gyárfás proved that in every $2$-colouring of the edges of $K_n$, there is a vertex cover by $2\sqrt{n}$ monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers $r,s$, what is the smallest number $pc_{r,s}(K_n)$ such that in every colouring of the edges of $K_n$ with $r$ colours, there exists a vertex cover of $K_n$ by $pc_{r,s}(K_n)$ monochromatic paths using altogether at most $s$ different colours?For fixed integers $r>s$ and as $n\to\infty$, we prove that $pc_{r,s}(K_n) = \Theta(n^{1/\chi})$, where $\chi=\max{\{1,2+2s-r\}}$ is the chromatic number of the Kneser graph $KG(r,r-s)$. More generally, if one replaces $K_n$ by an arbitrary $n$-vertex graph with fixed independence number $\alpha$, then we have $pc_{r,s}(G) = O(n^{1/\chi})$, where this time around $\chi$ is the chromatic number of the Kneser hypergraph $KG^{(\alpha+1)}(r,r-s)$. This result is tight in the sense that there exist graphs with independence number $\alpha$ for which $pc_{r,s}(G) = \Omega(n^{1/\chi})$. This is in sharp contrast to the case $r=s$, where it follows from a result of Sárközy (2012) that $pc_{r,r}(G)$ depends only on $r$ and $\alpha$, but not on the number of vertices.We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic $d$-regular graphs.


1972 ◽  
Vol 24 (5) ◽  
pp. 805-807 ◽  
Author(s):  
Hudson V. Kronk ◽  
John Mitchem

It is easy to verify that any connected graph G with maximum degree s has chromatic number χ(G) ≦ 1 + s. In [1], R. L. Brooks proved that χ(G) ≦ s, unless s = 2 and G is an odd cycle or s > 2 and G is the complete graph Ks+1. This was the first significant theorem connecting the structure of a graph with its chromatic number. For s ≦ 4, Brooks' theorem says that every connected s-chromatic graph other than Ks contains a vertex of degree > s — 1. An equivalent formulation can be given in terms of s-critical graphs. A graph G is said to be s-critical if χ(G) = s, but every proper subgraph has chromatic number less than s. Each scritical graph has minimum degree ≦ s — 1. We can now restate Brooks' theorem: if an s-critical graph, s ≦ 4, is not Ks and has p vertices and q edges, then 2q ≦ (s — l)p + 1. Dirac [2] significantly generalized the theorem of Brooks by showing that 2q ≦ (s — 1)£ + s — 3 and that this result is best possible.


2018 ◽  
Author(s):  
Jesse Geneson

We prove that the maximum possible number of edges in a graph of diameter $D$ and edge metric dimension $k$ is at most $(\lfloor \frac{2D}{3}\rfloor +1)^{k}+k \sum_{i = 1}^{\lceil \frac{D}{3}\rceil } (2i-1)^{k-1}$, sharpening the bound of $\binom{k}{2}+k D^{k-1}+D^{k}$ from Zubrilina (2018). We also prove that there is no subgraph of diameter $D$ with more than $(D+1)^{k}$ vertices in any connected graph of metric dimension $k$, and there is no subgraph of diameter $D$ with more than $(D+1)^{k}$ edges in any connected graph of edge metric dimension $k$. In particular, we prove that the maximum value of $n$ such that a graph of metric dimension $\leq k$ can contain the complete graph $K_{n}$ as a subgraph is $n = 2^{k}$. We also prove that the maximum value of $n$ such that a graph of metric dimension or edge metric dimension $\leq k$ can contain the complete bipartite graph $K_{n,n}$ as a subgraph is $2^{\theta(k)}$. Furthermore, we show that the maximum value of $n$ such that a graph of edge metric dimension $\leq k$ can contain $K_{1,n}$ as a subgraph is $n = 2^{k}$. We also show that the maximum value of $n$ such that a graph of metric dimension $\leq k$ can contain $K_{1,n}$ as a subgraph is $3^{k}-O(k)$. In addition, we prove that the $d$-dimensional grid $\prod_{i = 1}^{d} P_{r_{i}}$ has edge metric dimension at most $d$. This generalizes two results of Kelenc et al (2016), that non-path grids have edge metric dimension $2$ and that $d$-dimensional hypercubes have edge metric dimension at most $d$. We also provide a characterization of $n$-vertex graphs with edge metric dimension $n-2$, answering a question of Zubrilina. As a result of this characterization, we prove that any connected $n$-vertex graph $G$ such that $edim(G) = n-2$ has diameter at most $5$. More generally, we prove that any connected $n$-vertex graph with edge metric dimension $n-k$ has diameter at most $3k-1$.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


Author(s):  
Agnes D. Garciano ◽  
Maria Czarina T. Lagura ◽  
Reginaldo M. Marcelo

For a simple connected graph [Formula: see text] let [Formula: see text] be a coloring of [Formula: see text] where two adjacent vertices may be assigned the same color. Let [Formula: see text] be the sum of colors of neighbors of any vertex [Formula: see text] The coloring [Formula: see text] is a sigma coloring of [Formula: see text] if for any two adjacent vertices [Formula: see text] [Formula: see text] The least number of colors required in a sigma coloring of [Formula: see text] is the sigma chromatic number of [Formula: see text] and is denoted by [Formula: see text] A sigma coloring of a graph is a neighbor-distinguishing type of coloring and it is known that the sigma chromatic number of a graph is bounded above by its chromatic number. It is also known that for a path [Formula: see text] and a cycle [Formula: see text] where [Formula: see text] [Formula: see text] and [Formula: see text] if [Formula: see text] is even. Let [Formula: see text] the join of the graphs [Formula: see text], where [Formula: see text] or [Formula: see text] [Formula: see text] and [Formula: see text] is not an odd cycle for any [Formula: see text]. It has been shown that if [Formula: see text] for [Formula: see text] and [Formula: see text] then [Formula: see text]. In this study, we give necessary and sufficient conditions under which [Formula: see text] where [Formula: see text] is the join of copies of [Formula: see text] and/or [Formula: see text] for the same value of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text] and [Formula: see text] In this paper, we show that [Formula: see text] if and only if [Formula: see text] or [Formula: see text] is odd, [Formula: see text] is even and [Formula: see text]; and [Formula: see text] if and only if [Formula: see text] is even and [Formula: see text] We also obtain necessary and sufficient conditions on [Formula: see text] and [Formula: see text], so that [Formula: see text] for [Formula: see text] where [Formula: see text] or [Formula: see text] other than the cases [Formula: see text] and [Formula: see text]


2010 ◽  
Vol 21 (03) ◽  
pp. 311-319 ◽  
Author(s):  
AYSUN AYTAC ◽  
ZEYNEP NIHAN ODABAS

The rupture degree of an incomplete connected graph G is defined by [Formula: see text] where w(G - S) is the number of components of G - S and m(G - S) is the order of a largest component of G - S. For the complete graph Kn, rupture degree is defined as 1 - n. This parameter can be used to measure the vulnerability of a graph. Rupture degree can reflect the vulnerability of graphs better than or independent of the other parameters. To some extent, it represents a trade-off between the amount of work done to damage the network and how badly the network is damaged. Computing the rupture degree of a graph is NP-complete. In this paper, we give formulas for the rupture degree of composition of some special graphs and we consider the relationships between the rupture degree and other vulnerability parameters.


1999 ◽  
Vol 51 (5) ◽  
pp. 1035-1072
Author(s):  
R. A. Litherland

AbstractLet be a regular branched cover of a homology 3-sphere M with deck group and branch set a trivalent graph Γ; such a cover is determined by a coloring of the edges of Γ with elements of G. For each index-2 subgroup H of G, MH = /H is a double branched cover of M. Sakuma has proved that H1() is isomorphic, modulo 2-torsion, to ⊕HH1(MH), and has shown that H1() is determined up to isomorphism by ⊕HH1(MH) in certain cases; specifically, when d = 2 and the coloring is such that the branch set of each cover MH → M is connected, and when d = 3 and Γ is the complete graph K4. We prove this for a larger class of coverings: when d = 2, for any coloring of a connected graph; when d = 3 or 4, for an infinite class of colored graphs; and when d = 5, for a single coloring of the Petersen graph.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250151 ◽  
Author(s):  
M. BAZIAR ◽  
E. MOMTAHAN ◽  
S. SAFAEEYAN

Let M be an R-module. We associate an undirected graph Γ(M) to M in which nonzero elements x and y of M are adjacent provided that xf(y) = 0 or yg(x) = 0 for some nonzero R-homomorphisms f, g ∈ Hom (M, R). We observe that over a commutative ring R, Γ(M) is connected and diam (Γ(M)) ≤ 3. Moreover, if Γ(M) contains a cycle, then gr (Γ(M)) ≤ 4. Furthermore if ∣Γ(M)∣ ≥ 1, then Γ(M) is finite if and only if M is finite. Also if Γ(M) = ∅, then any nonzero f ∈ Hom (M, R) is monic (the converse is true if R is a domain). For a nonfinitely generated projective module P we observe that Γ(P) is a complete graph. We prove that for a domain R the chromatic number and the clique number of Γ(M) are equal. When R is self-injective, we will also observe that the above adjacency defines a covariant functor between a subcategory of R-MOD and the Category of graphs.


Sign in / Sign up

Export Citation Format

Share Document