On Dirac's Generalization of Brooks' Theorem

1972 ◽  
Vol 24 (5) ◽  
pp. 805-807 ◽  
Author(s):  
Hudson V. Kronk ◽  
John Mitchem

It is easy to verify that any connected graph G with maximum degree s has chromatic number χ(G) ≦ 1 + s. In [1], R. L. Brooks proved that χ(G) ≦ s, unless s = 2 and G is an odd cycle or s > 2 and G is the complete graph Ks+1. This was the first significant theorem connecting the structure of a graph with its chromatic number. For s ≦ 4, Brooks' theorem says that every connected s-chromatic graph other than Ks contains a vertex of degree > s — 1. An equivalent formulation can be given in terms of s-critical graphs. A graph G is said to be s-critical if χ(G) = s, but every proper subgraph has chromatic number less than s. Each scritical graph has minimum degree ≦ s — 1. We can now restate Brooks' theorem: if an s-critical graph, s ≦ 4, is not Ks and has p vertices and q edges, then 2q ≦ (s — l)p + 1. Dirac [2] significantly generalized the theorem of Brooks by showing that 2q ≦ (s — 1)£ + s — 3 and that this result is best possible.

10.37236/682 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Ararat Harutyunyan ◽  
Bojan Mohar

Brooks' Theorem states that a connected graph $G$ of maximum degree $\Delta$ has chromatic number at most $\Delta$, unless $G$ is an odd cycle or a complete graph. A result of Johansson shows that if $G$ is triangle-free, then the chromatic number drops to $O(\Delta / \log \Delta)$. In this paper, we derive a weak analog for the chromatic number of digraphs. We show that every (loopless) digraph $D$ without directed cycles of length two has chromatic number $\chi(D) \leq (1-e^{-13}) \tilde{\Delta}$, where $\tilde{\Delta}$ is the maximum geometric mean of the out-degree and in-degree of a vertex in $D$, when $\tilde{\Delta}$ is sufficiently large. As a corollary it is proved that there exists an absolute constant $\alpha < 1$ such that $\chi(D) \leq \alpha (\tilde{\Delta} + 1)$ for every $\tilde{\Delta} > 2$.


2010 ◽  
Vol 02 (02) ◽  
pp. 207-211 ◽  
Author(s):  
YUEHUA BU ◽  
QIONG LI ◽  
SHUIMING ZHANG

The equitable chromatic number χe(G) of a graph G is the smallest integer k for which G has a proper k-coloring such that the number of vertices in any two color classes differ by at most one. In 1973, Meyer conjectured that the equitable chromatic number of a connected graph G, which is neither a complete graph nor an odd cycle, is at most Δ(G). We prove that this conjecture holds for 2-degenerate graphs with Δ(G) ≥ 5 and plane graphs without 3, 4 and 5 cycles.


10.37236/6179 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

Let $G$ be a connected graph with maximum degree $\Delta$. Brooks' theorem states that $G$ has a $\Delta$-coloring unless $G$ is a complete graph or an odd cycle. A graph $G$ is degree-choosable if $G$ can be properly colored from its lists whenever each vertex $v$ gets a list of $d(v)$ colors. In the context of list coloring, Brooks' theorem can be strengthened to the following. Every connected graph $G$ is degree-choosable unless each block of $G$ is a complete graph or an odd cycle; such a graph $G$ is a Gallai tree. This degree-choosability result was further strengthened to Alon—Tarsi orientations; these are orientations of $G$ in which the number of spanning Eulerian subgraphs with an even number of edges differs from the number with an odd number of edges. A graph $G$ is degree-AT if $G$ has an Alon—Tarsi orientation in which each vertex has indegree at least 1. Alon and Tarsi showed that if $G$ is degree-AT, then $G$ is also degree-choosable. Hladký, Král', and Schauz showed that a connected graph is degree-AT if and only if it is not a Gallai tree. In this paper, we consider pairs $(G,x)$ where $G$ is a connected graph and $x$ is some specified vertex in $V(G)$. We characterize pairs such that $G$ has no Alon—Tarsi orientation in which each vertex has indegree at least 1 and $x$ has indegree at least 2. When $G$ is 2-connected, the characterization is simple to state.


10.37236/8857 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Zi-Xia Song ◽  
Jingmei Zhang

Given an integer $r\geqslant 1$ and graphs $G, H_1, \ldots, H_r$, we write $G \rightarrow ({H}_1, \ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $i\in\{1, \ldots, r\}$. A non-complete graph $G$ is $(H_1, \ldots, H_r)$-co-critical if $G \nrightarrow ({H}_1, \ldots, {H}_r)$, but $G+e\rightarrow ({H}_1, \ldots, {H}_r)$ for every edge $e$ in $\overline{G}$. In this paper, motivated by Hanson and Toft's conjecture [Edge-colored saturated graphs, J Graph Theory 11(1987), 191–196], we study the minimum number of edges over all $(K_t, \mathcal{T}_k)$-co-critical graphs on $n$ vertices, where $\mathcal{T}_k$ denotes the family of all trees on $k$ vertices. Following Day [Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017), 201–207], we apply graph bootstrap percolation on a not necessarily $K_t$-saturated graph to prove that for all $t\geqslant4 $ and $k\geqslant\max\{6, t\}$, there exists a constant $c(t, k)$ such that, for all $n \ge (t-1)(k-1)+1$, if $G$ is a $(K_t, \mathcal{T}_k)$-co-critical graph on $n$ vertices, then $$ e(G)\geqslant \left(\frac{4t-9}{2}+\frac{1}{2}\left\lceil \frac{k}{2} \right\rceil\right)n-c(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $t\in\{4,5\}$ and $k\geqslant6$. The method we develop in this paper may shed some light on attacking Hanson and Toft's conjecture.


10.37236/1342 ◽  
1997 ◽  
Vol 5 (1) ◽  
Author(s):  
Michael Krivelevich

A graph $G$ is $k$-color-critical (or simply $k$-critical) if $\chi(G)=k$ but $\chi(G') < k$ for every proper subgraph $G'$ of $G$, where $\chi(G)$ denotes the chromatic number of $G$. Consider the following problem: given $k$ and $n$, what is the minimal number of edges in a $k$-critical graph on $n$ vertices? It is easy to see that every vertex of a $k$-critical graph $G$ has degree at least $k-1$, implying $|E(G)|\geq {{k-1}\over {2}}|V(G)|$. Gallai improved this trivial bound to $|E(G)|\geq {{k-1}\over {2}}+{{k-3}\over {2(k^2-3)}}|V(G)|$ for every $k$-critical graph $G$ (where $k\geq 4$), which is not a clique $K_k$ on $k$ vertices. In this note we strengthen Gallai's result by showing Theorem Suppose $k\geq 4$, and let $G=(V,E)$ be a $k$-critical graph on more than $k$ vertices. Then $ |E(G)|\geq ({{k-1}\over {2}}+{{k-3}\over {2(k^2-2k-1)}})|V(G)| $


Author(s):  
Agnes D. Garciano ◽  
Maria Czarina T. Lagura ◽  
Reginaldo M. Marcelo

For a simple connected graph [Formula: see text] let [Formula: see text] be a coloring of [Formula: see text] where two adjacent vertices may be assigned the same color. Let [Formula: see text] be the sum of colors of neighbors of any vertex [Formula: see text] The coloring [Formula: see text] is a sigma coloring of [Formula: see text] if for any two adjacent vertices [Formula: see text] [Formula: see text] The least number of colors required in a sigma coloring of [Formula: see text] is the sigma chromatic number of [Formula: see text] and is denoted by [Formula: see text] A sigma coloring of a graph is a neighbor-distinguishing type of coloring and it is known that the sigma chromatic number of a graph is bounded above by its chromatic number. It is also known that for a path [Formula: see text] and a cycle [Formula: see text] where [Formula: see text] [Formula: see text] and [Formula: see text] if [Formula: see text] is even. Let [Formula: see text] the join of the graphs [Formula: see text], where [Formula: see text] or [Formula: see text] [Formula: see text] and [Formula: see text] is not an odd cycle for any [Formula: see text]. It has been shown that if [Formula: see text] for [Formula: see text] and [Formula: see text] then [Formula: see text]. In this study, we give necessary and sufficient conditions under which [Formula: see text] where [Formula: see text] is the join of copies of [Formula: see text] and/or [Formula: see text] for the same value of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text] and [Formula: see text] In this paper, we show that [Formula: see text] if and only if [Formula: see text] or [Formula: see text] is odd, [Formula: see text] is even and [Formula: see text]; and [Formula: see text] if and only if [Formula: see text] is even and [Formula: see text] We also obtain necessary and sufficient conditions on [Formula: see text] and [Formula: see text], so that [Formula: see text] for [Formula: see text] where [Formula: see text] or [Formula: see text] other than the cases [Formula: see text] and [Formula: see text]


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


10.37236/5173 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles and a special class of graphs of maximum degree 3, every connected graph can be decomposed into 3 locally irregular subgraphs. Using a combination of a probabilistic approach and some known theorems on degree constrained subgraphs of a given graph, we prove this to hold for graphs of minimum degree at least $10^{10}$. This problem is strongly related to edge colourings distinguishing neighbours by the pallets of their incident colours and to the 1-2-3 Conjecture. In particular, the contribution of this paper constitutes a strengthening of a result of Addario-Berry, Aldred, Dalal and Reed [J. Combin. Theory Ser. B 94 (2005) 237-244].


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 683-698 ◽  
Author(s):  
Kinkar Das ◽  
Marjan Matejic ◽  
Emina Milovanovic ◽  
Igor Milovanovic

LetG = (V,E) be a simple connected graph of order n (?2) and size m, where V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di = d(i), be a sequence of its vertex degrees with maximum degree ? and minimum degree ?. The symmetric division deg index, SDD, was defined in [D. Vukicevic, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261- 273] as SDD = SDD(G) = ?i~j d2i+d2j/didj, where i~j means that vertices i and j are adjacent. In this paper we give some new bounds for this topological index. Moreover, we present a relation between topological indices of graph.


Sign in / Sign up

Export Citation Format

Share Document