scholarly journals A note on bipartite graphs whose [1,k]-domination number equal to their number of vertices

2020 ◽  
Vol 40 (3) ◽  
pp. 375-382
Author(s):  
Narges Ghareghani ◽  
Iztok Peterin ◽  
Pouyeh Sharifani

A subset \(D\) of the vertex set \(V\) of a graph \(G\) is called an \([1,k]\)-dominating set if every vertex from \(V-D\) is adjacent to at least one vertex and at most \(k\) vertices of \(D\). A \([1,k]\)-dominating set with the minimum number of vertices is called a \(\gamma_{[1,k]}\)-set and the number of its vertices is the \([1,k]\)-domination number \(\gamma_{[1,k]}(G)\) of \(G\). In this short note we show that the decision problem whether \(\gamma_{[1,k]}(G)=n\) is an \(NP\)-hard problem, even for bipartite graphs. Also, a simple construction of a bipartite graph \(G\) of order \(n\) satisfying \(\gamma_{[1,k]}(G)=n\) is given for every integer \(n \geq (k+1)(2k+3)\).

2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Author(s):  
E. Sampathkumar ◽  
L. Pushpalatha

The study of domination in graphs originated around 1850 with the problems of placing minimum number of queens or other chess pieces on an n x n chess board so as to cover/dominate every square. The rules of chess specify that in one move a queen can advance any number of squares horizontally, vertically, or diagonally as long as there are no other chess pieces in its way. In 1850 enthusiasts who studied the problem came to the correct conclusion that all the squares in an 8 x 8 chessboard can be dominated by five queens and five is the minimum such number. With very few exceptions (Rooks, Bishops), these problems still remain unsolved today. Let G = (V,E) be a graph. A set S ⊂ V is a dominating set of G if every vertex in V–S is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of a dominating set.


Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be an integer, and let [Formula: see text] be a graph. A k-rainbow dominating function (or [Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text] such that for very [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. A k-rainbow dominating function [Formula: see text] in a graph with no isolated vertex is called a total k-rainbow dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertices. The total k-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of the total [Formula: see text]-rainbow dominating function on [Formula: see text]. The total k-rainbow reinforcement number of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges that must be added to [Formula: see text] in order to decrease the total k-rainbow domination number. In this paper, we investigate the properties of total [Formula: see text]-rainbow reinforcement number in graphs. In particular, we present some sharp bounds for [Formula: see text] and we determine the total [Formula: see text]-rainbow reinforcement number of some classes of graphs including paths, cycles and complete bipartite graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


2007 ◽  
Vol 57 (5) ◽  
Author(s):  
Vladimir Samodivkin

AbstractThe k-restricted domination number of a graph G is the minimum number d k such that for any subset U of k vertices of G, there is a dominating set in G including U and having at most d k vertices. Some new upper bounds in terms of order and degrees for this number are found.


Sign in / Sign up

Export Citation Format

Share Document