scholarly journals Finding tight Hamilton cycles in random hypergraphs faster

Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .

10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


2010 ◽  
Vol 21 (06) ◽  
pp. 905-924 ◽  
Author(s):  
MAREK KARPIŃSKI ◽  
ANDRZEJ RUCIŃSKI ◽  
EDYTA SZYMAŃSKA

In this paper we consider the computational complexity of deciding the existence of a perfect matching in certain classes of dense k-uniform hypergraphs. It has been known that the perfect matching problem for the classes of hypergraphs H with minimum ((k - 1)–wise) vertex degreeδ(H) at least c|V(H)| is NP-complete for [Formula: see text] and trivial for c ≥ ½, leaving the status of the problem with c in the interval [Formula: see text] widely open. In this paper we show, somehow surprisingly, that ½ is not the threshold for tractability of the perfect matching problem, and prove the existence of an ε > 0 such that the perfect matching problem for the class of hypergraphs H with δ(H) ≥ (½ - ε)|V(H)| is solvable in polynomial time. This seems to be the first polynomial time algorithm for the perfect matching problem on hypergraphs for which the existence problem is nontrivial. In addition, we consider parallel complexity of the problem, which could be also of independent interest.


10.37236/5025 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Asaf Ferber

We show how to adjust a very nice coupling argument due to McDiarmid in order to prove/reprove in a novel way results concerning Hamilton cycles in various models of random graph and hypergraphs. In particular, we firstly show that for $k\geq 3$, if $pn^{k-1}/\log n$ tends to infinity, then a random $k$-uniform hypergraph on $n$ vertices, with edge probability $p$, with high probability (w.h.p.) contains a loose Hamilton cycle, provided that $(k-1)|n$. This generalizes results of Frieze, Dudek and Frieze, and reproves a result of Dudek, Frieze, Loh and Speiss. Secondly, we show that there exists $K>0$ such for every $p\geq (K\log n)/n$ the following holds: Let $G_{n,p}$ be a random graph on $n$ vertices with edge probability $p$, and suppose that its edges are being colored with $n$ colors uniformly at random. Then, w.h.p. the resulting graph contains a Hamilton cycle with for which all the colors appear (a rainbow Hamilton cycle). Bal and Frieze proved the latter statement for graphs on an even number of vertices, where for odd $n$ their $p$ was $\omega((\log n)/n)$. Lastly, we show that for $p=(1+o(1))(\log n)/n$, if we randomly color the edge set of a random directed graph $D_{n,p}$ with $(1+o(1))n$ colors, then w.h.p. one can find a rainbow Hamilton cycle where all the edges are directed in the same way.


10.37236/2523 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze ◽  
Po-Shen Loh ◽  
Shelley Speiss

In the random $k$-uniform hypergraph $H^{(k)}_{n,p}$ of order $n$, each possible $k$-tuple appears independently with probability $p$. A loose Hamilton cycle is a cycle of order $n$ in which every pair of consecutive edges intersects in a single vertex. It was shown by Frieze that if $p\geq c(\log n)/n^2$ for some absolute constant $c>0$, then a.a.s. $H^{(3)}_{n,p}$ contains a loose Hamilton cycle, provided that $n$ is divisible by $4$. Subsequently,  Dudek and Frieze extended this result for any uniformity $k\ge 4$, proving that if $p\gg (\log n)/n^{k-1}$, then $H^{(k)}_{n,p}$ contains a loose Hamilton cycle, provided that $n$ is divisible by $2(k-1)$. In this paper, we improve the divisibility requirement and show that in the above results it is enough to assume that $n$ is a multiple of $k-1$, which is best possible.


10.37236/991 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
David Hartvigsen

A simple 2-matching in a graph is a subgraph all of whose nodes have degree $1$ or $2$. A simple 2-matching is called $k$-restricted if every connected component has $>k$ edges. We consider the problem of finding a $k$-restricted simple 2-matching with a maximum number of edges, which is a relaxation of the problem of finding a Hamilton cycle in a graph. Our main result is a min-max theorem for the maximum number of edges in a 1-restricted simple 2-matching. We prove this result constructively by presenting a polynomial time algorithm for finding a 1-restricted simple 2-matching with a maximum number of edges.


10.37236/7274 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Andrzej Dudek ◽  
Sean English ◽  
Alan Frieze

Let $H_{n,p,r}^{(k)}$ denote a randomly colored random hypergraph, constructed on the vertex set $[n]$ by taking each $k$-tuple independently with probability $p$, and then independently coloring it with a random color from the set $[r]$. Let $H$ be a $k$-uniform hypergraph of order $n$. An $\ell$-Hamilton cycle is a spanning subhypergraph $C$ of $H$ with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.In this note we study the existence of rainbow $\ell$-Hamilton cycles (that is every edge receives a different color) in $H_{n,p,r}^{(k)}$. We mainly focus on the most restrictive case when $r = n/(k-\ell)$. In particular, we show that for the so called tight Hamilton cycles ($\ell=k-1$) $p = e^2/n$ is the sharp threshold for the existence of a rainbow tight Hamilton cycle in $H_{n,p,n}^{(k)}$ for each $k\ge 4$.


2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Yury Person ◽  
Mathias Schacht

Graphs and Algorithms International audience We present an algorithm that for 2-colorable 3-uniform hypergraphs, finds a 2-coloring in average running time O (n(5) log(2) n).


10.37236/2055 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Alan Frieze ◽  
Andrzej Ruciński

Let $K_n^{(k)}$ be the complete $k$-uniform hypergraph, $k\ge3$, and let $\ell$ be an integer such that $1\le \ell\le k-1$ and $k-\ell$ divides $n$. An $\ell$-overlapping Hamilton cycle in $K_n^{(k)}$ is a spanning subhypergraph $C$ of  $K_n^{(k)}$  with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.We show that, for some constant $c=c(k,\ell)$ and sufficiently large $n$, for every coloring (partition) of the edges of $K_n^{(k)}$ which uses arbitrarily many colors but no color appears more than $cn^{k-\ell}$ times, there exists a rainbow $\ell$-overlapping Hamilton cycle $C$, that is every edge of $C$ receives a different color. We also prove that, for some constant $c'=c'(k,\ell)$ and sufficiently large $n$, for every coloring of the edges of $K_n^{(k)}$ in which the maximum degree of the subhypergraph induced by any single color is bounded by $c'n^{k-\ell}$,  there exists a properly colored $\ell$-overlapping Hamilton cycle $C$, that is every two adjacent edges receive different colors. For $\ell=1$, both results are (trivially) best possible up to the constants. It is an open question if our results are also optimal for $2\le\ell\le k-1$.The proofs  rely on a version of the Lovász Local Lemma and incorporate some ideas from Albert, Frieze, and Reed.


Sign in / Sign up

Export Citation Format

Share Document