scholarly journals Closing Gaps in Problems related to Hamilton Cycles in Random Graphs and Hypergraphs

10.37236/5025 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Asaf Ferber

We show how to adjust a very nice coupling argument due to McDiarmid in order to prove/reprove in a novel way results concerning Hamilton cycles in various models of random graph and hypergraphs. In particular, we firstly show that for $k\geq 3$, if $pn^{k-1}/\log n$ tends to infinity, then a random $k$-uniform hypergraph on $n$ vertices, with edge probability $p$, with high probability (w.h.p.) contains a loose Hamilton cycle, provided that $(k-1)|n$. This generalizes results of Frieze, Dudek and Frieze, and reproves a result of Dudek, Frieze, Loh and Speiss. Secondly, we show that there exists $K>0$ such for every $p\geq (K\log n)/n$ the following holds: Let $G_{n,p}$ be a random graph on $n$ vertices with edge probability $p$, and suppose that its edges are being colored with $n$ colors uniformly at random. Then, w.h.p. the resulting graph contains a Hamilton cycle with for which all the colors appear (a rainbow Hamilton cycle). Bal and Frieze proved the latter statement for graphs on an even number of vertices, where for odd $n$ their $p$ was $\omega((\log n)/n)$. Lastly, we show that for $p=(1+o(1))(\log n)/n$, if we randomly color the edge set of a random directed graph $D_{n,p}$ with $(1+o(1))n$ colors, then w.h.p. one can find a rainbow Hamilton cycle where all the edges are directed in the same way.

10.37236/3285 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Deepak Bal ◽  
Alan Frieze ◽  
Michael Krivelevich ◽  
Po-Shen Loh

For a fixed graph $H$ with $t$ vertices, an $H$-factor of a graph $G$ with $n$ vertices, where $t$ divides $n$, is a collection of vertex disjoint (not necessarily induced) copies of $H$ in $G$ covering all vertices of $G$. We prove that for a fixed tree $T$ on $t$ vertices and $\epsilon>0$, the random graph $G_{n,p}$, with $n$ a multiple of $t$, with high probability contains a family of edge-disjoint $T$-factors covering all but an $\epsilon$-fraction of its edges, as long as $\epsilon^4 n p \gg \log^2 n$. Assuming stronger divisibility conditions, the edge probability can be taken down to $p>\frac{C\log n}{n}$. A similar packing result is proved also for pseudo-random graphs, defined in terms of their degrees and co-degrees.


10.37236/1213 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Colin Cooper ◽  
Alan Frieze

Let the edges of a graph $G$ be coloured so that no colour is used more than $k$ times. We refer to this as a $k$-bounded colouring. We say that a subset of the edges of $G$ is multicoloured if each edge is of a different colour. We say that the colouring is $\cal H$-good, if a multicoloured Hamilton cycle exists i.e., one with a multicoloured edge-set. Let ${\cal AR}_k$ = $\{G :$ every $k$-bounded colouring of $G$ is $\cal H$-good$\}$. We establish the threshold for the random graph $G_{n,m}$ to be in ${\cal AR}_k$.


Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .


Author(s):  
Stefan Glock ◽  
Stephen Gould ◽  
Felix Joos ◽  
Daniela Kühn ◽  
Deryk Osthus

Abstract A tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic ordering of the vertices of G such that every set of k consecutive vertices in the ordering forms an edge. Rödl, Ruciński and Szemerédi proved that for $k\ge 3$ , every k-graph on n vertices with minimum codegree at least $n/2+o(n)$ contains a tight Hamilton cycle. We show that the number of tight Hamilton cycles in such k-graphs is ${\exp(n\ln n-\Theta(n))}$ . As a corollary, we obtain a similar estimate on the number of Hamilton ${\ell}$ -cycles in such k-graphs for all ${\ell\in\{0,\ldots,k-1\}}$ , which makes progress on a question of Ferber, Krivelevich and Sudakov.


10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


2012 ◽  
Vol 21 (5) ◽  
pp. 773-801 ◽  
Author(s):  
CHOONGBUM LEE ◽  
BENNY SUDAKOV ◽  
DAN VILENCHIK

Consider the random graph process where we start with an empty graph on n vertices and, at time t, are given an edge et chosen uniformly at random among the edges which have not appeared so far. A classical result in random graph theory asserts that w.h.p. the graph becomes Hamiltonian at time (1/2+o(1))n log n. On the contrary, if all the edges were directed randomly, then the graph would have a directed Hamilton cycle w.h.p. only at time (1+o(1))n log n. In this paper we further study the directed case, and ask whether it is essential to have twice as many edges compared to the undirected case. More precisely, we ask if, at time t, instead of a random direction one is allowed to choose the orientation of et, then whether or not it is possible to make the resulting directed graph Hamiltonian at time earlier than n log n. The main result of our paper answers this question in the strongest possible way, by asserting that one can orient the edges on-line so that w.h.p. the resulting graph has a directed Hamilton cycle exactly at the time at which the underlying graph is Hamiltonian.


10.37236/1497 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Tom Bohman ◽  
Alan Frieze ◽  
Miklós Ruszinkó ◽  
Lubos Thoma

It is shown in this note that with high probability it is enough to destroy all triangles in order to get a cover graph from a random graph $G_{n,p}$ with $p\le \kappa \log n/n$ for any constant $\kappa < 2/3$. On the other hand, this is not true for somewhat higher densities: If $p\ge \lambda (\log n)^3 / (n\log\log n)$ with $\lambda > 1/8$ then with high probability we need to delete more edges than one from every triangle. Our result has a natural algorithmic interpretation.


10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


1997 ◽  
Vol 62 (2) ◽  
pp. 609-623 ◽  
Author(s):  
James F. Lynch

AbstractLet be the infinitary language obtained from the first-order language of graphs by closure under conjunctions and disjunctions of arbitrary sets of formulas, provided only finitely many distinct variables occur among the formulas. Let p(n) be the edge probability of the random graph on n vertices. It is shown that if p(n) ≪ n−1 satisfies certain simple conditions on its growth rate, then for every , the probability that σ holds for the random graph on n vertices converges. In fact, if p(n) = n−α, α > 1, then the probability is either smaller than for some d > 0, or it is asymptotic to cn−d for some c > 0, d ≥ 0. Results on the difficulty of computing the asymptotic probability are given.


Sign in / Sign up

Export Citation Format

Share Document