Effect of the addition of glutathione and glucose to the culture medium on embryo development of IVM-IVF prepubertal goat oocytes

Zygote ◽  
2003 ◽  
Vol 11 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Aixa Urdaneta ◽  
Ana Raquel Jiménez ◽  
Dolors Izquierdo ◽  
María-Teresa Paramio

Our previous studies have shown that larger and more competent oocytes can be selected using the brilliant cresyl blue (BCB) test. The objective of this study was to assess, in BCB-selected oocytes, the effect on the embryo development of prepubertal goat oocytes of the addition to in vitro culture (IVC) medium of either glutathione (GSH) alone or GSH in combination with glucose . Oocytes were exposed to 26 mM BCB and were classified as: oocytes with a blue cytoplasm or grown oocytes (BCB+) and oocytes without blue cytoplasm or growing oocytes (BCB-). Oocytes were matured in TCM-199 with 100 μM cysteamine. Presumptive zygotes were cultured in synthetic oviductal fluid (SOF) in the presence or absence of 1 mM glutathione (experiment 1) for 7 days (8 days post-insemination, p.i.). In experiment 2 we tested the addition to culture of 2.78 mM glucose at day 5 p.i. BCB+ oocytes showed higher percentages of nuclear maturation than the BCB- and control groups (82.6%, 55.7% and 74.7%, respectively). The percentage of polyspermic oocytes was higher in BCB- than BCB+ oocytes. Supplementation of SOF medium with 1 mM GSH did not affect embryo development but the percentage of total embryos developed after culture was higher in BCB+ oocytes than in BCB- oocytes independently of the GSH supplementation. Glucose, alone or with GSH, added at 5 days p.i. did not affect embryo development. In conclusion, prepubertal goat oocytes were unable to develop beyond the 8-cell stage embryo under the culture conditions in this study.

2021 ◽  
Vol 14 (2) ◽  
pp. 452-456
Author(s):  
Mohamed Fathi ◽  
Amr F. Elkarmoty

Aim: Several factors had been concerned with the developmental competence of the sheep oocyte. This study aims to investigate the effect of adding growth factors (insulin-like growth factor 1 [IGF-1] and epidermal growth factor [EGF]) in the maturation medium of ewe oocytes selected based on brilliant cresyl blue (BCB) screening on in vitro maturation (IVM), fertilization, and pre-implantation embryo development. Materials and Methods: Cumulus-oocyte complexes (COCs) were obtained from the ovaries of slaughtered ewes by either aspiration or slicing techniques. COCs were in vitro matured in a medium containing IGF-1 and EGF (control group). For BCB screening, oocytes were stained and divided into BCB+ oocytes that matured in the same maturation conditions without adding growth factors (Group 2) or in the presence of growth factors (Group 3), and BCB– oocytes that matured in medium without growth factors (Group 4) or with growth factors (Group 5). Results: The supplementation of the maturation medium with growth factors during IVM of (BCB+) oocytes resulted in a significant increase in nuclear maturation rate (90.9%), fertilization rate (75.6%), and embryo developmental rates (60.0%, 46.7%, and 33.3% for cleavage, morula, and blastocyst, respectively). Conclusion: Culturing BCB+ oocytes in a maturation medium containing both EGF and IGF-1 showed a significant improvement in nuclear maturation, fertilization, and pre-implantation embryo development in vitro.


2007 ◽  
Vol 19 (1) ◽  
pp. 273 ◽  
Author(s):  
A. Sugulle ◽  
S. Katakawa ◽  
S. Yamamoto ◽  
S. Oomori ◽  
I. Itou ◽  
...  

The morphological identification of immature oocytes has commonly been used to select the bovine oocytes for IVF. However, <30% of the recovered oocytes reach the blastocyst stage after fertilization, and this is probably due to the quality of the oocytes at the beginning of maturation. The brilliant cresyl blue (BCB) stain determines the activity of glucose-6-phosphate dehydrogenase, an enzyme synthesized in growing oocytes. The aim of this study was to evaluate the effect of the BCB stain on the selection of bovine oocytes and on the subsequent embryo development for in vitro production (IVP). Cumulus–oocyte complexes (COCs) were collected by the aspiration of 2- to 6-mm follicles. A total of 559 oocytes were divided into 2 groups: (1) a control group, immediately cultured, and (2) a BCB-incubated group. After 90 min of BCB staining (Pujol et al. 2004 Theriogenology 61, 735–744), the oocytes were divided into oocytes with blue cytoplasm (BCB+) and oocytes without blue cytoplasm (BCB−). The COCs were matured for 20 h in TCM-199 supplemented with 5% calf serum (CS) and 0.02 mg mL−1 FSH at 38.5°C under an atmosphere of 5% CO2 in air. The matured COCs were inseminated with 5 × 106 sperm mL−1. After 18 h of gamete co-culture, the presumed zygotes were cultured in CR1aa supplemented with 5% CS for 9 days at 38.5°C under an atmosphere of 5% CO2, 5% O2, and 90% N2. Embryonic development was evaluated at 48 h after IVF (proportion of ≥5-cell stage, the total cleavage rates) and on Days 7 to 9 (blastocyst rate). The experiment was replicated 5 times, and the data were analyzed by a chi-square test and ANOVA. The results are presented in Table 1. The proportion of embryos with ≥5-cell stage was significantly higher (P < 0.01) in the BCB+ group than in the BCB− group, but not in the control group. The total cleavage rate for the BCB+ embryos was significantly higher than that of either the BCB− or the control group (P < 0.01). There were also significant differences (P < 0.01) in the blastocyst development between the BCB+ and BCB− embryos and between the BCB− and the control embryos (P < 0.05). This result showed that the selection of bovine oocytes by BCB staining before in vitro maturation may be useful for selecting oocytes that are developmentally competent up to Day 9 for IVP. Table 1.Effect of selection of oocytes by brilliant cresyl blue (BCB) staining on the subsequent embryo development of in vitro-matured/in vitro-fertilized bovine embryos


Zygote ◽  
2019 ◽  
Vol 27 (3) ◽  
pp. 166-172 ◽  
Author(s):  
Linying Jia ◽  
Bo Ding ◽  
Chong Shen ◽  
Shiwei Luo ◽  
Yanru Zhang ◽  
...  

SummaryRabbits play an important role in people’s lives due to their high nutritional value and high-quality hair that can be used as raw material for textiles. Furthermore, rabbits are an important animal model for human disease, as genome-edited animals are particularly valuable for studying gene functions and pathogenesis. Somatic cell nuclear transfer (SCNT) is an important technique for producing genome-edited animals and it has great value in saving endangered species and in clone stem cell therapy. However, the low efficiency of SCNT limits its application, with the selection of suitable rabbit oocytes being crucial to its success. In the present study, we collected oocytes from ovarian follicles and stained them with 26 μM brilliant cresyl blue (BCB). We then matured the oocytes in vitro and used them for SCNT. Comparison of the BCB-positive oocytes with BCB-negative oocytes and the control group showed that the BCB-positive group had a significantly higher maturation rate (81.4% vs. 48.9% and 65.3% for the negative and control groups, respectively), cleavage rate (86.6% vs. 67.9% and 77.9%), blastocyst rate (30.5% vs. 12.8% and 19.6%), total number of blastocysts (90±7.5 vs. 65.3±6.3 and 67.5±5.7), and inner cell mass (ICM)/ trophectoderm (TE) index (42.3±4.2 vs. 30.2±2.1 and 33.9±5.1) (P<0.05). The BCB-positive group had a significantly lower apoptosis index (2.1±0.6 vs. 8.2±0.9 and 6.7±1.1 for the negative and control groups, respectively) (P<0.05). These findings demonstrate that BCB-positive oocytes have a higher maturation ability and developmental competence in vitro, indicating that BCB staining is a reliable method for selecting oocytes to enhance the efficiency of SCNT.


2018 ◽  
Vol 18 (1) ◽  
pp. 87-98
Author(s):  
Seyede Zahra Banihosseini ◽  
Marefat Ghaffari Novin ◽  
Hamid Nazarian ◽  
Abbas Piryaei ◽  
Siavash Parvardeh ◽  
...  

Abstract Quercetin is a natural flavonoid with strong antioxidant activity. In the present study, we evaluate the influence of different concentrations of quercetin (QT) on intracytoplasmic oxidative stress and glutathione (GSH) concentration, during in vitro maturation (IVM) and fertilization in mouse oocytes. IVM was carried out in the presence of control (QT0), 5 (QT5), 10 (QT10), and 20 (QT20) μg/mL of QT. Nuclear maturation, intracellular GSH and ROS content were evaluated following the IVM. In these oocytes, we subsequently evaluated the effect of QT supplementation on embryo development, including 2-cell, 8-cell, and blastocyst rate. The results of the present study showed that the supplementation of 10 μg/mL QT in maturation medium increased the number of MII oocytes. In addition, fertilization and blastocyst rate in QT10 treatment group were significantly higher in comparison to the other groups, and elevated the amount of intracellular GSH content compared to other QT concentrations and control groups. The intracellular ROS level was the lowest among oocytes matured in Q5 and Q10 treatment groups. This result suggested that quercetin dose-dependently improves nuclear maturation and embryo development, via reducing intracytoplasmic oxidative stress in mature oocyte.


Zygote ◽  
2011 ◽  
Vol 21 (3) ◽  
pp. 238-245 ◽  
Author(s):  
Diego Duarte Alcoba ◽  
Bianca Letícia da Rosa Braga ◽  
Nathallie Louise Sandi-Monroy ◽  
Letícia Auler Proença ◽  
Rui Fernando Felix Lopes ◽  
...  

SummaryThe objective of this work was to evaluate the rate of meiosis resumption and nuclear maturation of rat (Rattus norvegicus) oocytes selected for in vitro maturation (IVM) after staining of cumulus–oocyte complexes (COCs) with blue cresyl brilliant (BCB) using different protocols: exposure for 30, 60 or 90 min at 26 μM BCB (Experiment 1), and exposure for 60 min at 13, 20 or 26 μM BCB (Experiment 2). In Experiment 1, the selection of oocytes exposed to BCB for 60 min was found to be the most suitable, as meiosis resumption rates in the BCB+ group (n = 35/61; 57.37%) were the closest to the observed in the control (not exposed) group (n = 70/90; 77.77%) and statistically higher than the values observed for the BCB− group (n = 3/41; 7.32%). Additionally, the more effective evaluation of diagnostic tests (sensitivity and negative predictive value 100%) was observed in COCs exposed for 60 min. In Experiment 2, the 13 μM BCB+ group presented rates of meiosis resumption (n = 57/72; 72.22%) similar to the control group (n = 87/105; 82.86%) and higher than other concentration groups. However, this results of the analysis between BCB− oocytes was also higher in the 13 μM BCB group (n = 28/91; 30.78%) when compared with BCB− COCs exposed to 20 μM (n = 3/62; 4.84%) or 26 μM (n = 3/61; 4.92%) BCB. The nuclear maturation rate in the 13 μM BCB group was similar between BCB+ or BCB− oocytes. The 20 μM BCB group had a lower rate of nuclear maturation of BCB− oocytes than other groups. Thus, our best results in the selection of Rattus norvegicus oocytes by staining with BCB were obtained using the concentration of 13 μM and 20 μM, and an incubation period of 60 min.


2019 ◽  
Vol 65 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Anna-Rita PIRAS ◽  
Irene MENÉNDEZ-BLANCO ◽  
Sandra SOTO-HERAS ◽  
Maria-Gracia CATALÁ ◽  
Dolors IZQUIERDO ◽  
...  

Zygote ◽  
2016 ◽  
Vol 25 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Elisa C.S Santos ◽  
Jorgea Pradieé ◽  
Elisângela M. Madeira ◽  
Miriane M. Pereira ◽  
Bruna Mion ◽  
...  

SummaryStaining with brilliant cresyl blue (BCB) may be used for oocyte selection, but BCB staining itself and the most commonly used selection medium (DMPBS) may compromise the development of porcine oocytesin vitro.This study evaluated DNA fragmentation, nuclear maturation, the area of migration of cortical granules (CG) and embryo development for stained (BCB+) and unstained (BCB−) oocytes incubated in DMPBS and in a modified medium (ReproPel) tested for the first time. Unexposed (UN), BCB+ and BCB− oocytes were incubated composing six groups: DMPBS/UN; DMPBS/BCB+; DMPBS/BCB−; ReproPel/UN; ReproPel/BCB+; and ReproPel/BCB−. There were more BCB+ oocytes in ReproPel than in DMPBS (P< 0.05). The DNA fragmentation was evaluated for oocytes in DMPBS/BCB+, DMPBS/BCB−, ReproPel/BCB+, ReproPel/BCB− and in porcine follicular fluid (control). The frequency of oocytes with no DNA fragmentation was greatest (64.6%) in DMPBS/BCB+ and lowest in ReproPel/BCB+ and ReproPel/BCB− (26.8 and 34.1%, respectively) (P< 0.05). Nuclear maturation rates were greater (P< 0.05) for DMPBS/BCB+ (63.1%), ReproPel/UN (55.1%) and ReproPel/BCB+ (50.2%) than for DMPBS/UN (40.8%) and ReproPel/BCB− (35.5%). The area of CG was greater (P< 0.05) for ReproPel/BCB− (80.7%) and DMPBS/UN (77.6%) than for ReproPel/UN (34.7%). Cleavage rates for DMPBS/BCB+ and ReproPel/BCB+ were greater than for DMPBS/UN (P< 0.05). Blastocyst development rates were greatest (P< 0.05) for ReproPel/UN and ReproPel/BCB+. In both media, BCB staining was apparently unable to select competent oocytes, which likely occurred due to toxicity. Despite the similar nuclear maturation and area of CG compared with DMPBS, oocytes selected in ReproPel presented impaired DNA integrity.


2018 ◽  
Vol 30 (1) ◽  
pp. 203 ◽  
Author(s):  
A. Salama ◽  
M. Fathi ◽  
M. R. Badr ◽  
A. R. Moawad

In vitro embryo production (IVP) in the domestic bitch is important for conservation of endangered canids. Compared with various domestic animals, the development of assisted reproductive technologies (ART) in the dog has lagged behind, mainly due to the low percentage of oocytes that can reach metaphase II (MII) stage after in vitro maturation (IVM). Beneficial effects of l-carnitine (LC) on embryonic development in culture have been reported in many mammalian species; however, no studies have been conducted in dogs. The aim of the present study was to investigate the effect of LC supplementation during IVM of canine oocytes on nuclear maturation, fertilization status, and pre-implantation development following IVM/IVF. Cumulus-oocyte complexes (COC) were collected by slicing ovaries obtained from dogs (n = 20, 1 to 6 years of age) after ovariohysterectomy. The COC were subjected to IVM for 72 h in a medium (TCM-199) supplemented with LC at different concentrations (0.1, 0.3, 0.6, 1.0, or 2.0 mg mL−1) or without LC supplements (0 mg mL−1; control). Matured oocytes were fertilized in vitro with frozen–thawed spermatozoa, and presumptive zygotes were cultured in SOF medium for 7 days. Frequencies of nuclear maturation (72 h post-IVM), fertilization rates (18 h post-insemination), and embryo development (Days 2 to 5 post-insemination) were evaluated. Data were analysed by one-way ANOVA followed by Tukey’s multiple comparisons test. Supplementation of IVM medium with 0.3 or 0.6 mg mL−1 LC significantly improved (P ≤ 0.05) maturation (35.4% and 41.4%) and fertilization (21.3% and 25.8%) rates compared with the controls and with other LC-supplemented groups; values ranged from 20.1% to 25.0% for maturation and from 12.1% to 14.6% for fertilization. Cleavage (2- to 16-cell stages) was significantly higher (P ≤ 0.05) in the 0.6 mg mL−1 LC supplemented group than the 0.3 mg mL−1 supplemented group (16.3% v. 13.3%). These values were significantly higher (P ≤ 0.05) than those in other groups. Interestingly, 4.5% of IVM/IVF oocytes were developed to morula in 0.6 mg mL−1 LC supplemented group which was significantly higher (P ≤ 0.05) than those developed in the 0.3 mg mL−1 supplemented group (1.0%). No embryos developed beyond the 2- to 16-cell stage in the rest of the groups. In conclusion, l-carnitine supplementation during IVM is particularly efficient in improving nuclear maturation and pre-implantation embryo development of canine oocytes after IVF. These outcomes are important for the improvement of IVM conditions that can advance the efficiency of ART in dogs.


2011 ◽  
Vol 23 (1) ◽  
pp. 223 ◽  
Author(s):  
M. G. Catalá ◽  
D. Izquierdo ◽  
R. Romaguera ◽  
S. Hammami ◽  
M. Roura ◽  
...  

The aim of this study was to evaluate the utility of the brilliant cresyl blue (BCB) test as an indirect measure of oocyte growth to select competent prepubertal sheep oocytes for in vitro embryo production. The BCB stain allows the determination of glucose–6-phosphate dehydrogenase (G6PD) activity, an enzyme with decreased activity in oocytes that have finished their growth phase. Oocytes were obtained after slicing the surface of lamb ovaries (2–5 months old) obtained from a local abattoir. Oocytes with more than 3 compact cumulus layers and homogeny cytoplasm were selected and stained with different concentrations of BCB diluted in PBS (13-, 26-, 39-, and 52-μM BCB) during 60 min at 38.5°C in a humidified air atmosphere. Oocytes were classified into groups depending on their cytoplasm coloration: oocytes with blue cytoplasm or grown oocytes (BCB+) and oocytes without blue coloration or growing oocytes (BCB–). Oocytes were matured in an enriched TCM-199 medium for 24 h at 38.5°C and 5% CO2 in a humidified atmosphere. Oocyte diameter was also measured. Matured oocytes were partially denuded and transferred to fertilization medium (SOF) supplemented with 10% of oestrous sheep serum. Fresh semen was kept at room temperature (25°C) for 1 h. Highly motile spermatozoa were selected by using Ovipure density gradient (Nidacon EVB S.L.), and oocytes were fertilized with 1 × 106 sp mL–1. After 20 h postinsemination, presumptive zygotes were cultured for 8 days in SOF with 10% of fetal bovine serum at 38.5°C, 5% CO2, and 90% N2. Data was analysed by performing Fisher’s exact test for blastocyst production and ANOVA with Tukey’s post-test for oocyte diameter. Table 1 shows the percentage of BCB-stained oocytes and their embryo development. In this study oocytes exposed during 60 min to 13-μM BCB showed a higher percentage of embryos reaching blastocyst stage than did those in the control group (≤0.01). In other species such as goats (Rodriguez-Gonzalez et al. 2002 Theriogenology 57(5), 1397–1409) and cattle (Alm et al. 2005 Theriogenology 63(8), 2194–2205), the best protocol for the oocyte selection was the use of 26-μM BCB during 90 min. Oocyte diameter showed significant differences between BCB– with BCB+ and control group (110 μm, 134 μm, and 121 μm, respectively, ≤0.001). In conclusion, using 13 μM of BCB during 60 min is a suitable technique for increasing embryo blastocyst rates using lamb oocytes. Table 1.Effect of BCB1 concentration on embryo development of lamb oocytes The grant sponsor was the Spanish Ministry of Science and Innovation, Code: AGL2007-60227-CO2-01.


Zygote ◽  
2003 ◽  
Vol 11 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Aixa Urdaneta ◽  
Ana-Raquel Jiménez-Macedo ◽  
Dolors Izquierdo ◽  
Maria-Teresa Paramio

Our previous studies have shown that the addition of 100 μM cysteamine to the in vitro maturation (IVM) medium increased the embryo development of prepubertal goat oocytes. The aim of the present study was to evaluate the effect of adding different concentrations of cysteamine to the IVM medium and to the in vitro embryo culture medium (IVC) on the embryo development of prepubertal goat oocytes selected by the brilliant cresyl blue (BCB) test. Oocytes were exposed to BCB and classified as: oocytes with a blue cytoplasm or grown oocytes (BCB+) or oocytes without blue cytoplasm or growing oocytes (BCB−). In Experiment 1, oocytes were matured in a conventional IVM medium supplemented with 100 μM, 200 μM or 400 μM cysteamine. In Experiment 2, oocytes were matured with 400 μM cysteamine and following in vitro fertilization (IVF) were cultured in SOF medium supplemented with 50 μM and 100 μM cysteamine. In Experiment 1, BCB+ oocytes matured with 100 μM and 200 μM cysteamine showed higher normal fertilization and embryo development rates than BCB− oocytes. Oocytes matured with 400 μM cysteamine did not present these differences between BCB+ and BCB− oocytes. In Experiment 2, the addition of 50 μM and 100 μM cysteamine to culture medium did not affect the proportion of total embryos obtained from BCB+ oocytes (35.89% and 38.29%, respectively) but was significantly different in BCB− oocytes (34.23% and 29.04%, respectively, P<0.05). In conclusion, the addition of 400 μM cysteamine to the IVM improved normal fertilization and embryo development of BCB− oocytes at the same rates as those obtained from BCB+ oocytes. The proportions of morulae plus blastocyst development were not affected by the treatments.


Sign in / Sign up

Export Citation Format

Share Document