127 L-Carnitine Supplementation During In Vitro Maturation Improves Developmental Competence of Canine Oocytes

2018 ◽  
Vol 30 (1) ◽  
pp. 203 ◽  
Author(s):  
A. Salama ◽  
M. Fathi ◽  
M. R. Badr ◽  
A. R. Moawad

In vitro embryo production (IVP) in the domestic bitch is important for conservation of endangered canids. Compared with various domestic animals, the development of assisted reproductive technologies (ART) in the dog has lagged behind, mainly due to the low percentage of oocytes that can reach metaphase II (MII) stage after in vitro maturation (IVM). Beneficial effects of l-carnitine (LC) on embryonic development in culture have been reported in many mammalian species; however, no studies have been conducted in dogs. The aim of the present study was to investigate the effect of LC supplementation during IVM of canine oocytes on nuclear maturation, fertilization status, and pre-implantation development following IVM/IVF. Cumulus-oocyte complexes (COC) were collected by slicing ovaries obtained from dogs (n = 20, 1 to 6 years of age) after ovariohysterectomy. The COC were subjected to IVM for 72 h in a medium (TCM-199) supplemented with LC at different concentrations (0.1, 0.3, 0.6, 1.0, or 2.0 mg mL−1) or without LC supplements (0 mg mL−1; control). Matured oocytes were fertilized in vitro with frozen–thawed spermatozoa, and presumptive zygotes were cultured in SOF medium for 7 days. Frequencies of nuclear maturation (72 h post-IVM), fertilization rates (18 h post-insemination), and embryo development (Days 2 to 5 post-insemination) were evaluated. Data were analysed by one-way ANOVA followed by Tukey’s multiple comparisons test. Supplementation of IVM medium with 0.3 or 0.6 mg mL−1 LC significantly improved (P ≤ 0.05) maturation (35.4% and 41.4%) and fertilization (21.3% and 25.8%) rates compared with the controls and with other LC-supplemented groups; values ranged from 20.1% to 25.0% for maturation and from 12.1% to 14.6% for fertilization. Cleavage (2- to 16-cell stages) was significantly higher (P ≤ 0.05) in the 0.6 mg mL−1 LC supplemented group than the 0.3 mg mL−1 supplemented group (16.3% v. 13.3%). These values were significantly higher (P ≤ 0.05) than those in other groups. Interestingly, 4.5% of IVM/IVF oocytes were developed to morula in 0.6 mg mL−1 LC supplemented group which was significantly higher (P ≤ 0.05) than those developed in the 0.3 mg mL−1 supplemented group (1.0%). No embryos developed beyond the 2- to 16-cell stage in the rest of the groups. In conclusion, l-carnitine supplementation during IVM is particularly efficient in improving nuclear maturation and pre-implantation embryo development of canine oocytes after IVF. These outcomes are important for the improvement of IVM conditions that can advance the efficiency of ART in dogs.

2011 ◽  
Vol 23 (8) ◽  
pp. 990 ◽  
Author(s):  
Shan Liu ◽  
Huai L. Feng ◽  
Dennis Marchesi ◽  
Zi-Jiang Chen ◽  
Avner Hershlag

The aim of the present study was to evaluate the effect of gonadotropins (Gn) on oocyte maturation, developmental competence and apoptosis in an animal model. Bovine cumulus–oocyte complexes (COCs) were matured for 24 h in media supplemented with varying concentrations of Bravelle (B), B + Menopur (B + M) or B + Repronex (B + R) (Ferring Pharmaceuticals, Parsiappany, NJ, USA). Then, nuclear maturation, embryo development, and apoptosis in cumulus cells and oocytes were evaluated. Low to moderate Gn concentrations (75–7500 mIU mL–1) effectively improved nuclear maturation and in vitro development. Higher concentrations of Gn (75 000 mIU mL–1) did not have any added beneficial effects and nuclear maturation and blastocyst rates in the presence of these concentrations were comparable to control (P > 0.05). Most COCs showed slight apoptosis when exposed to 75, 750 and 7500 mIU mL–1 Gn; however, when the concentration was increased to 75 000 mIU mL–1, the proportion of moderately apoptotic COCs increased. In conclusion, extremely high concentrations of Gn have detrimental effects on oocyte nuclear maturation and embryo development and increase apoptosis in cumulus cells, suggesting the importance of judicious use of Gn in assisted reproductive technologies (ART).


2005 ◽  
Vol 17 (3) ◽  
pp. 361 ◽  
Author(s):  
David K. Gardner ◽  
Michelle Lane

The environment to which the mammalian embryo is exposed during the preimplantation period of development has a profound effect on the physiology and viability of the conceptus. It has been demonstrated that conditions that alter gene expression, and in some instances the imprinting status of specific genes, have all previously been shown to adversely affect cell physiology. Thus, questions are raised regarding the aetiology of abnormal gene expression and altered imprinting patterns, and whether problems can be averted by using more physiological culture conditions. It is also of note that the sensitivity of the embryo to its surroundings decreases as development proceeds. Post compaction, environmental conditions have a lesser effect on gene function. This, therefore, has implications regarding the conditions used for IVF and the culture of the cleavage stage embryo. The developmental competence of the oocyte also impacts gene expression in the embryo, and therefore superovulation has been implicated in abnormal methylation and imprinting in the resultant embryo. Furthermore, the genetics and dietary status of the mother have a profound impact on embryo development and gene expression. The significance of specific animal models for human assisted reproductive technologies (ART) is questioned, given that most cattle data have been obtained from in vitro-matured oocytes and that genes imprinted in domestic and laboratory animals are not necessarily imprinted in the human. Patients treated with ART have fertility problems, which in turn may predispose their gametes or embryos to greater sensitivities to the process of ART. Whether this is from the drugs involved in the ovulation induction or from the IVF, intracytoplasmic sperm injection or culture procedures themselves remains to be determined. Alternatively, it may be that epigenetic alterations are associated with infertility and symptoms are subsequently revealed through ART. Whatever the aetiology, continued long-term monitoring of the children conceived through ART is warranted.


2018 ◽  
Vol 18 (1) ◽  
pp. 87-98
Author(s):  
Seyede Zahra Banihosseini ◽  
Marefat Ghaffari Novin ◽  
Hamid Nazarian ◽  
Abbas Piryaei ◽  
Siavash Parvardeh ◽  
...  

Abstract Quercetin is a natural flavonoid with strong antioxidant activity. In the present study, we evaluate the influence of different concentrations of quercetin (QT) on intracytoplasmic oxidative stress and glutathione (GSH) concentration, during in vitro maturation (IVM) and fertilization in mouse oocytes. IVM was carried out in the presence of control (QT0), 5 (QT5), 10 (QT10), and 20 (QT20) μg/mL of QT. Nuclear maturation, intracellular GSH and ROS content were evaluated following the IVM. In these oocytes, we subsequently evaluated the effect of QT supplementation on embryo development, including 2-cell, 8-cell, and blastocyst rate. The results of the present study showed that the supplementation of 10 μg/mL QT in maturation medium increased the number of MII oocytes. In addition, fertilization and blastocyst rate in QT10 treatment group were significantly higher in comparison to the other groups, and elevated the amount of intracellular GSH content compared to other QT concentrations and control groups. The intracellular ROS level was the lowest among oocytes matured in Q5 and Q10 treatment groups. This result suggested that quercetin dose-dependently improves nuclear maturation and embryo development, via reducing intracytoplasmic oxidative stress in mature oocyte.


2015 ◽  
Vol 27 (1) ◽  
pp. 245 ◽  
Author(s):  
N. W. Santiquet ◽  
A. F. Greene ◽  
W. B. Schoolcraft ◽  
R. L. Krisher

In vitro maturation (IVM) of cumulus-oocyte complexes (COC) results in oocytes with reduced quality and is still not as efficient as in vivo maturation in most species. One hypothesis that could explain the low developmental competence of oocytes following IVM is that the oocytes resume meiosis too quickly after being retrieved from the follicles. Studies in mice and bovine have shown that a short period of prematuration in the presence of cAMP modulators, before IVM, enhances oocyte developmental competence. Moreover, other studies have recently demonstrated that cGMP is also a crucial molecule involved in meiotic resumption. Here, our objective was to examine the effect of a cGMP modulator in combination with a cAMP modulator during a short period of prematuration on mouse oocyte nuclear maturation and subsequent embryo development following IVF. The COC were collected (6 replicates) from 2-month-old outbred CF1 mice 48 h after PMSG (5 IU) injection in the presence (pre-IVM) or absence (control) of cGMP and cAMP modulators. Pre-IVM COC (n = 184) were then placed in prematuration medium that also contained these cGMP and cAMP modulators. After 2 h, pre-IVM COC were washed and transferred to our in-house prepared, completely defined IVM medium (Paczkowski et al. 2014 Reprod.) for the remaining 16 h of culture; 10 oocytes per 50 µL drop under oil, at 37°C in 7.5% CO2 and 6.5% O2 due to the increased altitude at our location. Control COC (n = 161) were matured in the same IVM medium under identical conditions for 18 h, without prematuration. After IVM, oocytes were fixed for assessment of nuclear maturation, or fertilized and cultured in vitro and subsequent development (96 and 112 h) was recorded (Paczkowski et al. 2014 Reprod.). Results were analysed by ANOVA. A short 2-h prematuration period in the presence of cGMP and cAMP modulators had no impact on oocyte nuclear maturation to metaphase II after IVM or on embryo cleavage after IVF. However, pre-IVM treatment improved the developmental competence of the oocyte, as demonstrated by increased embryo development. More (P < 0.02) blastocysts (96 h of culture) and hatched blastocysts (112 h of culture) developed in the pre-IVM treatment compared to control (31.0 ± 3.4 v. 19.9 ± 3.2%; 31.5 ± 3.4 v. 19.9 ± 3.2%, respectively). In conclusion, a combination of cGMP and cAMP modulators during oocyte collection and a subsequent short pre-IVM improves oocyte developmental competence and could therefore be a potential tool to improve embryo yield following IVM.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 581
Author(s):  
Adel R. Moawad ◽  
Ali Salama ◽  
Magdy R. Badr ◽  
Mohamed Fathi

This study aimed to investigate the effect of L-Carnitine (LC) supplementation during in vitro maturation (IVM) of canine oocytes on nuclear maturation, fertilization status, and preimplantation development. Cumulus–oocyte complexes (COCs) collected from the ovaries of ovariohysterectomized female dogs were matured in vitro for 72 h in a TCM-199 medium supplemented with (0.1, 0.3, 0.6, 1.0, or 2.0 mg/mL) or without (0.0 mg/mL) LC. Matured oocytes were fertilized in vitro with frozen–thawed spermatozoa, and zygotes were cultured in a SOF medium for 7 days. IVM rates were higher (p ≤ 0.05) in 0.3 and 0.6 mg/mL LC supplemented groups than in the control (0.0 mg/mL LC) and other LC groups. Fertilization (18 h postinsemination (pi)) and cleavage (2–16-cell stage at day 3 pi) rates were higher (p ≤ 0.05) in the 0.6 mg/mL LC group than in the control and 0.1, 1.0, and 2 mg/mL LC supplemented groups. Interestingly, 4.5% of fertilized oocytes developed to morula (day 5 pi) in the 0.6 mg/mL LC group, which was higher (p ≤ 0.05) than those developed in the 0.3 mg/mL group (1.0%). No cleaved embryos developed to morula in other groups. In conclusion, LC supplementation at 0.6 mg/mL during IVM of canine oocytes improved their maturation, fertilization, and preimplantation embryo development rates following IVF and in vitro culture (IVC).


2021 ◽  
pp. 2512-2517
Author(s):  
Ludymila F. Cantanhêde ◽  
Cristiane T. Santos-Silva ◽  
Marcelo T. Moura ◽  
José C. Ferreira-Silva ◽  
Júnior M. B. Oliveira ◽  
...  

Background and Aim: Oocyte in vitro maturation (IVM) is an appealing approach for several assisted reproductive technologies and dissecting oocyte maturation. Nonetheless, IVM leads to lower developmental competence and usually relies on undefined, serum-containing media. Therefore, biochemical profiling aimed to explore fluctuations in IVM media content during the acquisition of oocyte developmental competence. Materials and Methods: Bovine cumulus-oocyte complexes (COCs) underwent IVM in TCM199 medium with Earle's salts, supplemented with 2.0 mM L-glutamine, 10% fetal bovine serum, antibiotics, and 0.05 IU/mL porcine follicle-stimulating hormone (FSH+) or vehicle control (CTL) medium for 22 h. Results: FSH withdrawal (CTL) diminished several processes associated with the acquisition of oocyte developmental competence, such as reduced cumulus cell expansion, diminished estradiol synthesis (FSH+: 116.0±0.0 pg/mL vs. CTL: 97.6±18.0 pg/mL), and lower oocyte nuclear maturation rate (FSH+: 96.47% vs. CTL: 88.76%). Fresh media formulations (i.e., TCM199 with FSH or vehicle) were indistinguishable under biochemical profiling threshold conditions. Biochemical profiling showed similar total protein and lipid concentrations between groups. Further, total sugar concentrations diminished from fresh media to their post-IVM counterparts, albeit in an FSH-independent manner. Glycogen concentrations remained unaltered after IVM within CTL media, albeit were substantially lower after IVM under FSH+ conditions. Conclusion: FSH mediates the consumption of serum-derived glycogen by bovine COCs during IVM and implies that serum-free media should contain increased glucose concentrations to facilitate the acquisition of oocyte developmental competence.


2012 ◽  
Vol 24 (1) ◽  
pp. 210
Author(s):  
S. M. Bernal ◽  
J. Heinzmann ◽  
D. Herrmann ◽  
A. Lucas-Hahn ◽  
B. Timmermann ◽  
...  

Bovine oocytes and embryos have been established as a valuable model for studying human early development, specifically after assisted reproductive technologies (ART). Efforts for the improvement of ART in the last years have focused on culture media and conditions. Recently, Albuz et al. (2010) reported that the culture of bovine cumulus–oocyte complexes (COC) with cyclic adenosine 3′, 5′-monophosphate (cAMP) modulators, before and during extended in vitro maturation (IVM), improved blastocyst quality and yields in mice and cattle. In this study, we investigated the influence of an extended IVM phase in combination with cAMP modulators on blastocyst yields and quality, the effects on mRNA expression profiles and epigenetic marks. We compared these results to the standard protocol (Wrenzycki et al., 2001) used in our laboratory with oocytes from different retrieval methods. Oocytes were retrieved from slaughterhouse ovaries either by slicing or follicular aspiration. The COC were either subjected directly to IVM using the standard TCM-based protocol for 24 h (TCM24-slicing and TCM24-aspiration, respectively) or oocytes that were retrieved by aspiration were treated with forskolin and IBMX for a 2-h pre-IVM period, followed by an extended IVM phase of 30 h in TCM, supplemented with cilostamide (cAMP30-aspiration). Statistical analyses were performed using 1-way ANOVA followed by the nonparametrical Kruskal–Wallis test. Maturation rates were 79.3 ± 2.6% in TCM24-aspiration, 74.2 ± 8.8% in cAMP30-aspiration and 70.4 ± 5.1% in TCM24-slicing oocytes. Matured oocytes were fertilized in vitro with semen from a bull previously proven to be suitable for IVF. Blastocyst rates from presumptive zygotes were significantly higher (P = 0.003) in the TCM24-aspiration group (32 ± 7%) compared to TCM24-slicing (23 ± 7%) and cAMP30-aspiration (22 ± 5%). Analysis revealed that cell numbers were rather similar in the 3 experimental groups (125 ± 19, 128 ± 15 and 129 ± 9), while in vivo-produced blastocysts possessed slightly more cells (134 ± 17; P ≥ 0.05). RT-qPCR analysis of mRNA expression for a panel of genes indicative of embryo quality including DNMT3a, SLC2A8, COX2 and PCK2, showed that blastocysts derived from both aspiration protocols were similar to in vivo embryos, but were different from blastocysts resulting from the ovary-slicing protocol. Specifically, the expression profile of COX2, which is involved in pregnancy outcome and in the response to growth factors, indicates an enhanced developmental competence of aspirated oocytes. However, the transcript level of EGR1 (early growth response) was significantly higher (P = 0.009) in in vivo-derived blastocysts in comparison to all in vitro treatments. The investigation of the epigenetic status of the in vitro-derived blastocysts based on bisulfite sequencing of 2 satellite repeat sequences is currently underway. Results so far indicate that the method of obtaining the oocytes (slicing vs aspiration) for in vitro production of bovine embryos is of greater influence on blastocyst quality than IVM conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247518
Author(s):  
Thais Preisser Pontelo ◽  
Mauricio Machaim Franco ◽  
Taynan Stonoga Kawamoto ◽  
Felippe Manoel Costa Caixeta ◽  
Ligiane de Oliveira Leme ◽  
...  

This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.


2021 ◽  
Vol 22 (11) ◽  
pp. 5918
Author(s):  
Paweł Kordowitzki ◽  
Gabriela Sokołowska ◽  
Marta Wasielak-Politowska ◽  
Agnieszka Skowronska ◽  
Mariusz T. Skowronski

The oocyte is the major determinant of embryo developmental competence in all mammalian species. Although fundamental advances have been generated in the field of reproductive medicine and assisted reproductive technologies in the past three decades, researchers and clinicians are still trying to elucidate molecular factors and pathways, which could be pivotal for the oocyte’s developmental competence. The cell-to-cell and cell-to-matrix communications are crucial not only for oocytes but also for multicellular organisms in general. This latter mentioned communication is among others possibly due to the Connexin and Pannexin families of large-pore forming channels. Pannexins belong to a protein group of ATP-release channels, therefore of high importance for the oocyte due to its requirements of high energy supply. An increasing body of studies on Pannexins provided evidence that these channels not only play a role during physiological processes of an oocyte but also during pathological circumstances which could lead to the development of diseases or infertility. Connexins are proteins that form membrane channels and gap-junctions, and more precisely, these proteins enable the exchange of some ions and molecules, and therefore they do play a fundamental role in the communication between the oocyte and accompanying cells. Herein, the role of Pannexins and Connexins for the processes of oogenesis, folliculogenesis, oocyte maturation and fertilization will be discussed and, at the end of this review, Pannexin and Connexin related pathologies and their impact on the developmental competence of oocytes will be provided.


2021 ◽  
pp. 3164-3169
Author(s):  
Mohamed M. M. El-Sokary ◽  
Al-Shimaa Al-H. H. El-Naby ◽  
Amal R. Abd El Hameed ◽  
Karima Gh. M. Mahmoud ◽  
T. H. Scholkamy

Background and Aim: Despite many trials, buffalo embryos have poor cryosurvivability because of their high lipid content. L-carnitine was found to be a lipid-reducing agent when added to oocyte and embryo culture media. The study aimed to determine the most effective concentration of L-carnitine to improve the oocyte developmental competence and cryotolerance of buffalo embryos. Materials and Methods: In vitro maturation and embryo culture media were supplemented with four concentrations of L-carnitine: 0 (control), 0.25, 0.5, and 1 mM. Good-quality embryos on 7 days were vitrified using mixtures of dimethyl sulfoxide and ethylene glycol at two concentrations (3.5 and 7 M). Results: The result showed that the cleavage and morula rates were significantly (p<0.05) higher in the 0.5 mM group. Blastocyst rates were significantly (p<0.05) higher at both 0.5 and 1 mM. The rates of viable embryos directly after thawing were significantly (p<0.05) increased in the 0.5 mM group. No significant difference was found in embryos cultured for 24 h after warming among all the groups. Conclusion: The addition of L-carnitine at a concentration of 0.5 mM to the culture media improves the oocyte developmental competence and cryotolerance of buffalo embryos directly after warming but not after 24 h of culture. Nevertheless, further studies must identify how L-carnitine exerts its beneficial micromechanisms.


Sign in / Sign up

Export Citation Format

Share Document