In vitro development of goat parthenogenetic and somatic cell nuclear transfer embryos derived from different activation protocols

Zygote ◽  
2009 ◽  
Vol 18 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Jitong Guo ◽  
Fengjun Liu ◽  
Zekun Guo ◽  
Yu Li ◽  
Zhixing An ◽  
...  

SummaryOocyte activation is an essential step in animal cloning to allow subsequent development of the reconstructed embryos. A special activation protocol is required for different animal species. The present study investigated low temperature, electrical pulses, ethanol, ionomycin and strontium for goat oocyte activation in order to optimize the protocols. We found, as a result, effective activation and parthenogenetic development of goat oocytes that had been derived from ionomycin, strontium and electrical pulse groups. Within each group 79.3–81.6%, 2.2–78.8% and 65.5% of the oocytes cleaved and 16.2–24.8%, 0–15.6% and 11.1% of the cleaved embryos developed into blastocysts when the oocytes were activated by ionomycin combined with 6-dimethylaminopurine, strontium plus cytochalasin B and electrical pulses combined with cytochalasin B, respectively. However, low temperature and ethanol were both unable to activate goat oocytes under our experimental conditions. When ionomycin combined with 6-dimethylaminopurine and strontium plus cytochalasin B was applied to activate somatic cell nuclear transfer embryos derived from cultured cumulus, 51.0% and 72.5% of the embryos cleaved, respectively. After transfer of 4-cell embryos into recipients, one (1/19 and 1/7) of the recipients from each group was found to be pregnant as detected by ultrasound, but both of these recipients lost the embryos between 45 and 60 days of pregnancy.

Zygote ◽  
2008 ◽  
Vol 16 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Wakayama Sayaka ◽  
Kishigami Satoshi ◽  
Nguyen Van Thuan ◽  
Ohta Hiroshi ◽  
Hikichi Takafusa ◽  
...  

SummaryAnimal cloning methods are now well described and are becoming routine. Yet, the frequency at which live cloned offspring are produced remains below 5%, irrespective of the nuclear donor species or cell type. One possible explanation is that the reprogramming factor(s) of each oocyte is insufficient or not properly adapted for the receipt of a somatic cell nucleus, because it is naturally prepared only for the receipt of a gamete. Here, we have increased the oocyte volume by oocyte fusion and examined its subsequent development. We constructed oocytes with volumes two to nine times greater than the normal volume by the electrofusion or mechanical fusion of intact and enucleated oocytes. We examined their in vitro and in vivo developmental potential after parthenogenetic activation, intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT). When the fused oocytes were activated parthenogenetically, most developed to morulae or blastocysts, regardless of their original size. Diploid fused oocytes were fertilized by ICSI and developed normally and after embryo transfer, we obtained 12 (4–15%) healthy and fertile offspring. However, enucleated fused oocytes could not support the development of mice cloned by SCNT. These results suggest that double fused oocytes have normal potential for development after fertilization, but oocytes with extra cytoplasm do not have enhanced reprogramming potential.


2008 ◽  
Vol 20 (1) ◽  
pp. 197
Author(s):  
J. Zhu ◽  
K. H. S. Campbell

The objective of the present experiments was to examine whether strontium could activate in vitro-matured ovine oocytes. Oocytes were collected and matured as previously described (Lee and Campbell 2006 Biol. Reprod. 74, 691–698). Briefly, selected cumulus–oocyte complexes were cultured in modified TCM-199 medium supplemented with 20% sheep serum and hormones for 22–23 h, at 39°C, 5% CO2 in air. Matured oocytes were randomly divided into four groups and treated as follows: (1) cultured in 10 mm strontium + 5 μg mL–1 cytochalasin B in Ca2+-free CZB medium for 4–5 h; (2) electrically activated in Ca2+-containing medium, then cultured in 10 mm strontium + 5 μg mL–1 cytochalasin B in Ca2+-free CZB medium for 4–5 h; (3) electrically activated in Ca2+-containing medium and then cultured in SOF medium containing 5 μg mL–1 cytochalasin B for 4–5 h; and (4) electrically activated in Ca2+-free medium and then transferred into SOF medium + 5 μg mL–1 cytochalasin B for 4–5 h. This experiment was repeated three times. Activation rates based on the number of pronuclear formations/the number of oocytes cultured were 96.7% (147/152), 95.9% (116/121), 75.9% (101/133), and 43.0% (56/107) in Groups 1–4, respectively. After 7 days of culture in SOF medium, 26.8%, 33.3%, 19.6%, and 0% of oocytes in Groups 1, 2, 3, and 4 developed to the blastocyst stage, respectively. Significant differences in blastocyst rate were observed across these groups except between groups 1 and 2 (P < 0.01). However, there were no significant differences in mean number of nuclei/blastocyst across Groups 1, 2, and 3 (P > 0.05). Our results demonstrated that in vitro-matured ovine oocytes can be effectively activated with strontium alone, resulting in an activation rate of 96.7% and a blastocyst rate of 26.8% (blastocysts/oocytes). Also, a combination of strontium and electrical pulses could benefit sheep oocyte activation and embryo development to the blastocyst stage (95.9% and 33.3%, respectively). We conclude that strontium is an effective activator for sheep oocyte activation and it could be used for sheep nuclear transfer. Table 1. Parthenogenetic development of oocytes activated by SrCl2+ and electrical pulses


Zygote ◽  
2017 ◽  
Vol 25 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Xiao-Chen Li ◽  
Qing Guo ◽  
Hai-Ying Zhu ◽  
Long Jin ◽  
Yu-Chen Zhang ◽  
...  

SummaryWe examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P < 0.05). The blastocyst formation rate was higher in the group treated with AZD5438 for 4 h than in the groups treated with AZD5438 for 2 or 6 h (42.8% vs. 38.6% and 37.2%, respectively; P > 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.


Reproduction ◽  
2013 ◽  
Vol 146 (4) ◽  
pp. 325-333 ◽  
Author(s):  
Rodrigo C Bohrer ◽  
Limei Che ◽  
Paulo B D Gonçalves ◽  
Raj Duggavathi ◽  
Vilceu Bordignon

Phosphorylated histone H2A.x (H2AX139ph) is a key factor for the repair of DNA double-strand breaks (DSBs) and the presence of H2AX139ph foci indicates the sites of DSBs. In this study, we characterized the presence of H2AX139ph during in vitro development of porcine embryos produced by IVF and somatic cell nuclear transfer (SCNT). Pronuclear stage embryos produced by IVF had, on average, 9.2 H2AX139ph foci per pronucleus. The number of H2AX139ph foci was higher in the 2-cell-stage embryos than in the 4-cell-stage embryos fixed at 48 h post-fertilization. The percentage of H2AX139ph-positive nuclei was higher in SCNT embryos that were activated with ionomycin (ION) alone than in those activated with ION and strontium chloride (ION+Sr2+). A negative correlation was found between the percentage of H2AX139ph-positive cells and the total number of cells per embryo in day 7 blastocysts produced by IVF or SCNT. Based on the detection of H2AX139ph foci, the findings of this study indicate that DSBs occur in a high proportion of porcine embryos produced by either IVF or SCNT; fast-cleaving embryos have fewer DSBs than slow-cleaving embryos; the oocyte activation protocol can affect DNA integrity in SCNT embryos; and better-quality blastocysts have fewer DSBs. We propose that the presence of H2AX139ph foci can be a useful marker of embryo quality.


2017 ◽  
Vol 29 (1) ◽  
pp. 125
Author(s):  
G. V. Landschoot ◽  
V. Savy ◽  
N. Canel ◽  
S. Ferraris ◽  
D. Salamone

Cloning of domestic species by somatic cell nuclear transfer (SCNT) continues to be inefficient, probably due to an incomplete reprogramming of the reconstituted embryo. The ability of the embryonic cytoplasm to support reprogramming fluctuates within the cell cycle (Egli et al. 2007 Nature 447, 679–85). In this context, we compared the development capability and second polar body (2PB) extrusion of embryos produced by metaphase (M) cells, in comparison with G0/G1 cells, which are commonly used as nuclear donors. Because M cells have 2 sets of chromosomes (in contrast with G0/G1 cells, which have only 1 set), an activation protocol that impedes 2PB extrusion is required to produce reconstituted embryos with the correct ploidy. Therefore, we performed SCNT with M or G0/G1 cells, followed by different activation protocols, and evaluated in vitro development and 2PB extrusion of the reconstituted embryos. Cow oocytes were in vitro matured and enucleated as described by Gambini et al. (2014 PLoS One 14, 9). A group of cells at 70 to 80% confluence was synchronized in M stage using 0.05 μg mL−1 demecolcine for 3 to 4 h and used as nuclear donors for SCNT (M group). Another group of cells was induced into quiescence by serum starvation for 3 to 4 days before SCNT (G0/G1 group). For activation, reconstituted embryos were treated with 5 µM ionomycin (Io) for 4 min followed by 5-h incubation in 50 μM roscovitine for M group, or in 50 μM roscovitine and 5 μg mL−1 cytochalasin B for G0/G1 group. Parthenogenetic controls were activated with Io followed by 50 μM roscovitine alone (ROSCO) or with 5 μg mL−1 cytochalasin B (ROSCO/CB). Hoescht 33342 staining was performed 16 h post-Io to evaluate 2PB extrusion. Other activated oocytes were cultured in SOFaa medium and rates of cleavage, morulas, and blastocysts were evaluated at Days 2, 5 and 7 of in vitro development, respectively. Data were analysed by Fisher’s exact test (P < 0.05). Rates of 2PB extrusion were 72.72 (n = 33), 65.63 (n = 32), 80 (n = 15), and 42.86 (n = 14) for M, G0/G1, ROSCO, and ROSCO/CB, respectively. Results of in vitro development are shown in Table 1. In conclusion, somatic M cells can be used as donors to produce cloned embryos. The M and G0/G1 groups were able to induce cloned blastocysts, even though rates did not differed statistically from controls groups (ROSCO and ROSCO/CB). The M group was as effective as G0/G1. Although further analysis is required to establish the quality of the embryos, our results are encouraging for use in SCNT. Table 1.In vitro development of NT embryos produced with M and G0/G1 donor cells


Zygote ◽  
2000 ◽  
Vol 8 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Tao Tao ◽  
Zoltán Macháty ◽  
Lalantha R. Abeydeera ◽  
Billy N. Day ◽  
Randall S. Prather

Experiments were conducted to examine the effects of (a) different activation methods, (b) incubation time in calcium-free medium and (c) bisbenzimide staining on the activation and subsequent development of pig oocytes. Oocytes were matured in vitro and activated by one of the following methods: combined thimerosal/dithiothreitol (DTT) treatment, calcium ionophore A23187 treatment followed by incubation in the presence of 6-dimethylaminopurine (6-DMAP), electroporation, and electroporation followed by incubation with cytochalasin B. There were no significant differences in the activation rate (ranging from 70.0% to 88.3%) and the percentage of cleaved embryos after activation (ranging between 48.8% and 58.8%) among the four treatment groups (p < 0.05). The rate of development to the blastocyst stage in oocytes activated by thimerosal/DTT (10.0%) or electroporation followed by cytochalasin B treatment (12.3%) was significantly higher (p < 0.05) than in the group activated with A23187/6-DMAP (2.5%). Both the activation rate and the rate of blastocyst formation in oocytes that were incubated in Ca2+-free medium for 8 h before thimerosal/DTT activation were significantly lower (p < 0.05) than in those incubated for 0, 1 or 4 h. Intracellular Ca2+ measurements revealed that the Ca2+ homeostasis in these oocytes were severely altered. Staining of oocytes with 5 μg/ml bisbenzimide for 2 h decreased the quality of blastocysts and increased the rate of degenerated embryos at day 6. Two activation protocols (thimerosal/DTT and electroproation) were used for activation after nuclear transfer; the rate of nuclear formation did not differ in the oocytes activated by the two different methods.


2016 ◽  
Vol 5 (12) ◽  
pp. 5124
Author(s):  
Rajesh Wakchaure ◽  
Subha Ganguly*

Cloning a horse means using the genetic material (DNA) from a donor horse to produce a genetically identical foal. This technique involves collecting the DNA from the donor and inserting that DNA into an egg from another mare whose, DNA content has been removed, fusing donor nucleus with enucleated recipient oocytes, which then develops as an embryo, in vitro culture of embryo and lastly transfer cultured embryo into the uterus of a recipient mare. The modification of the in vitro culture conditions which can be suitable for equine oocyte activation, oocyte maturation and embryo development are the fundamental steps for a successful in vitro procedure for somatic cell nuclear transfer (SCNT) in the horse to avoid the embryo losses. In general, few studies are available in the literature on equine in vitro embryo production and it is only recently that reports have been published on completely in vitro production of equine preimplantation embryos by means of in vitro oocyte maturation The present review discusses the latest developments in the field of equine cloning technique with the employment of SCNT. The basic understanding of SCNT for in vitro culture conditions is relevant to the increased efficiency of cloning. The available genotype can be used by SCNT which can enhance the vigour of a particular infertile or low fertile animal to produce normal fertility.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1034
Author(s):  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Lian Cai ◽  
Mirae Kim ◽  
...  

This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.


Sign in / Sign up

Export Citation Format

Share Document