Computational fluid dynamics in a model of the total cavopulmonary connection reconstructed using magnetic resonance images

2005 ◽  
Vol 15 (S3) ◽  
pp. 61-67 ◽  
Author(s):  
Laura Socci ◽  
Francesca Gervaso ◽  
Francesco Migliavacca ◽  
Giancarlo Pennati ◽  
Gabriele Dubini ◽  
...  

The recent developments in imaging techniques have created new opportunities to give an accurate description of the three-dimensional morphology of vessels. Such three-dimensional reconstruction of anatomical structures from medical images has achieved importance in several applications, such as the reconstruction of human bones, spine portions, and vascular districts.

2014 ◽  
Vol 10 (3) ◽  
pp. 426-435 ◽  
Author(s):  
Mehmet V. Harput ◽  
Pablo Gonzalez-Lopez ◽  
Uğur Türe

Abstract BACKGROUND: During surgery for intrinsic brain lesions, it is important to distinguish the pathological gyrus from the surrounding normal sulci and gyri. This task is usually tedious because of the pia-arachnoid membranes with their arterial and venous complexes that obscure the underlying anatomy. Moreover, most tumors grow in the white matter without initially distorting the cortical anatomy, making their direct visualization more difficult. OBJECTIVE: To create and evaluate a simple and free surgical planning tool to simulate the anatomy of the surgical field with and without vessels. METHODS: We used free computer software (OsiriX Medical Imaging Software) that allowed us to create 3-dimensional reconstructions of the cerebral surface with and without cortical vessels. These reconstructions made use of magnetic resonance images from 51 patients with neocortical supratentorial lesions operated on over a period of 21 months (June 2011 to February 2013). The 3-dimensional (3-D) anatomic images were compared with the true surgical view to evaluate their accuracy. In all patients, the landmarks determined by 3-D reconstruction were cross-checked during surgery with high-resolution ultrasonography; in select cases, they were also checked with indocyanine green videoangiography. RESULTS: The reconstructed neurovascular structures were confirmed intraoperatively in all patients. We found this technique to be extremely useful in achieving pure lesionectomy, as it defines tumor's borders precisely. CONCLUSION: A 3-D reconstruction of the cortical surface can be easily created with free OsiriX software. This technique helps the surgeon perfect the mentally created 3-D picture of the tumor location to carry out cleaner, safer surgeries.


2007 ◽  
Vol 98 (3) ◽  
pp. 1775-1790 ◽  
Author(s):  
Yoram Yekutieli ◽  
Rea Mitelman ◽  
Binyamin Hochner ◽  
Tamar Flash

Octopus arms, as well as other muscular hydrostats, are characterized by a very large number of degrees of freedom and a rich motion repertoire. Over the years, several attempts have been made to elucidate the interplay between the biomechanics of these organs and their control systems. Recent developments in electrophysiological recordings from both the arms and brains of behaving octopuses mark significant progress in this direction. The next stage is relating these recordings to the octopus arm movements, which requires an accurate and reliable method of movement description and analysis. Here we describe a semiautomatic computerized system for 3D reconstruction of an octopus arm during motion. It consists of two digital video cameras and a PC computer running custom-made software. The system overcomes the difficulty of extracting the motion of smooth, nonrigid objects in poor viewing conditions. Some of the trouble is explained by the problem of light refraction in recording underwater motion. Here we use both experiments and simulations to analyze the refraction problem and show that accurate reconstruction is possible. We have used this system successfully to reconstruct different types of octopus arm movements, such as reaching and bend initiation movements. Our system is noninvasive and does not require attaching any artificial markers to the octopus arm. It may therefore be of more general use in reconstructing other nonrigid, elongated objects in motion.


2007 ◽  
Vol 37 (4) ◽  
pp. 1174-1177
Author(s):  
Julio Carlos Canola ◽  
Fabrício Singaretti de Oliveira

Specific software was used for reconstruction of spontaneous intracranial tumor volume from magnetic resonance images (MRI) in three dogs. Histopathologically confirmed meningioma, cystic meningioma, and choroid plexus tumors were evaluated before and after surgery. The software allowed the whole-volume segmentation of the skin, brain, tumor, edema, and cyst. Manipulation of the three-dimensional images (3D) allowed visualization of all anatomical structures, aided clinical understanding, surgical planning, and treatment monitoring.


2018 ◽  
Vol 38 (12) ◽  
pp. 2057-2072 ◽  
Author(s):  
Kazuto Masamoto ◽  
Alberto Vazquez

The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.


Author(s):  
Jun Ho Kim ◽  
Reinaldo A Júnior ◽  
Eduardo M Aoki ◽  
Marina G Baladi ◽  
Arthur RG Cortes ◽  
...  

The Canalis Sinuosus (CS) is known as an anatomical variation of anterior superior alveolar nerve being a neurovascular bundle. Frequently, the anterior maxillary region receives surgical interventions of different specialties. The knowledge concerning anatomical structures in this region, is crucial to reach predictable and safe surgical procedures. The overlapping of anatomical structures in conventional imaging examinations have a limit in observing neurovascular canal, such as the CS. Thus, Cone Beam Computed Tomography (CBCT) images may give a great support in preoperative planning, since it allows the three-dimensional reconstruction of the anatomical details of its structures. In this report, the author describes an implant rehabilitation that may have possibly injured the anterior superior alveolar nerve.


2008 ◽  
Vol 295 (6) ◽  
pp. H2427-H2435 ◽  
Author(s):  
Kartik S. Sundareswaran ◽  
Kerem Pekkan ◽  
Lakshmi P. Dasi ◽  
Kevin Whitehead ◽  
Shiva Sharma ◽  
...  

Little is known about the impact of the total cavopulmonary connection (TCPC) on resting and exercise hemodynamics in a single ventricle (SV) circulation. The aim of this study was to elucidate this mechanism using a lumped parameter model of the SV circulation. Pulmonary vascular resistance (1.96 ± 0.80 WU) and systemic vascular resistances (18.4 ± 7.2 WU) were obtained from catheterization data on 40 patients with a TCPC. TCPC resistances (0.39 ± 0.26 WU) were established using computational fluid dynamic simulations conducted on anatomically accurate three-dimensional models reconstructed from MRI ( n = 16). These parameters were used in a lumped parameter model of the SV circulation to investigate the impact of TCPC resistance on SV hemodynamics under resting and exercise conditions. A biventricular model was used for comparison. For a biventricular circulation, the cardiac output (CO) dependence on TCPC resistance was negligible (sensitivity = −0.064 l·min−1·WU−1) but not for the SV circulation (sensitivity = −0.88 l·min−1·WU−1). The capacity to increase CO with heart rate was also severely reduced for the SV. At a simulated heart rate of 150 beats/min, the SV patient with the highest resistance (1.08 WU) had a significantly lower increase in CO (20.5%) compared with the SV patient with the lowest resistance (50%) and normal circulation (119%). This was due to the increased afterload (+35%) and decreased preload (−12%) associated with the SV circulation. In conclusion, TCPC resistance has a significant impact on resting hemodynamics and the exercise capacity of patients with a SV physiology.


Sign in / Sign up

Export Citation Format

Share Document