Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models

2021 ◽  
pp. 1-5
Author(s):  
Michael D. Seckeler ◽  
Brian A. Boe ◽  
Brent J. Barber ◽  
Darren P. Berman ◽  
Aimee K. Armstrong

Abstract Background: Three-dimensional printing is increasingly utilised for congenital heart defect procedural planning. CT or MR datasets are typically used for printing, but similar datasets can be obtained from three-dimensional rotational angiography. We sought to assess the feasibility and accuracy of printing three-dimensional models of CHD from rotational angiography datasets. Methods: Retrospective review of CHD catheterisations using rotational angiography was performed, and patient and procedural details were collected. Imaging data from rotational angiography were segmented, cleaned, and printed with polylactic acid on a Dremel® 3D Idea Builder (Dremel, Mount Prospect, IL, USA). Printing time and materials’ costs were captured. CT scans of printed models were compared objectively to the original virtual models. Two independent, non-interventional paediatric cardiologists provided subjective ratings of the quality and accuracy of the printed models. Results: Rotational angiography data from 15 catheterisations on vascular structures were printed. Median print time was 3.83 hours, and material costs were $2.84. The CT scans of the printed models highly matched with the original digital models (root mean square for Hausdorff distance 0.013 ± 0.003 mesh units). Independent reviewers correctly described 80 and 87% of the models (p = 0.334) and reported high quality and accuracy (5 versus 5, p = NS; κ = 0.615). Conclusion: Imaging data from rotational angiography can be converted into accurate three-dimensional-printed models of CHD. The cost of printing the models was negligible, but the print time was prohibitive for real-time use. As the speed of three-dimensional printing technology increases, novel future applications may allow for printing patient-specific devices based on rotational angiography datasets.

2019 ◽  
Vol 109 (2) ◽  
pp. 166-173 ◽  
Author(s):  
A.B.V. Pettersson ◽  
M. Salmi ◽  
P. Vallittu ◽  
W. Serlo ◽  
J. Tuomi ◽  
...  

Background and Aims: Additive manufacturing or three-dimensional printing is a novel production methodology for producing patient-specific models, medical aids, tools, and implants. However, the clinical impact of this technology is unknown. In this study, we sought to characterize the clinical adoption of medical additive manufacturing in Finland in 2016–2017. We focused on non-dental usage at university hospitals. Materials and Methods: A questionnaire containing five questions was sent by email to all operative, radiologic, and oncologic departments of all university hospitals in Finland. Respondents who reported extensive use of medical additive manufacturing were contacted with additional, personalized questions. Results: Of the 115 questionnaires sent, 58 received answers. Of the responders, 41% identified as non-users, including all general/gastrointestinal (GI) and vascular surgeons, urologists, and gynecologists; 23% identified as experimenters or previous users; and 36% identified as heavy users. Usage was concentrated around the head area by various specialties (neurosurgical, craniomaxillofacial, ear, nose and throat diseases (ENT), plastic surgery). Applications included repair of cranial vault defects and malformations, surgical oncology, trauma, and cleft palate reconstruction. Some routine usage was also reported in orthopedics. In addition to these patient-specific uses, we identified several off-the-shelf medical components that were produced by additive manufacturing, while some important patient-specific components were produced by traditional methodologies such as milling. Conclusion: During 2016–2017, medical additive manufacturing in Finland was routinely used at university hospitals for several applications in the head area. Outside of this area, usage was much less common. Future research should include all patient-specific products created by a computer-aided design/manufacture workflow from imaging data, instead of concentrating on the production methodology.


Author(s):  
Serge C. Harb ◽  
Leonardo L. Rodriguez ◽  
Marija Vukicevic ◽  
Samir R. Kapadia ◽  
Stephen H. Little

Cardiovascular 3-dimensional printing refers to the fabrication of patients’ specific cardiac anatomic replicas based on volumetric imaging data sets obtained by echocardiography, computed tomography, or magnetic resonance imaging. It enables advanced visualization and enhanced anatomic and sometimes hemodynamic understanding and also improves procedural planning and allows interventional simulation. Also, it is helpful in communication with patients and trainees. These key advantages have led to its broad use in the field of cardiology ranging from congenital to vascular and valvular disease, particularly in structural heart interventions, where many emerging technologies are being developed and tested. This review summarizes the process of 3-dimensional printing and the workflow from imaging acquisition to model generation and discusses the cardiac applications of 3-dimensional printing focusing on its use in percutaneous structural interventions, where procedural planning now commonly relies on 3-dimensional printed models.


2016 ◽  
Vol 29 (05) ◽  
pp. 409-415 ◽  
Author(s):  
Peter Strøm ◽  
Boaz Arzi ◽  
Derek Cissell ◽  
Frank Verstraete

SummaryObjective: To describe the clinical features and results of treatment of true ankylosis and pseudoankylosis of the temporomandibular joint in dogs.Methods: This study was a retrospective case series. Ten client-owned dogs that were presented for inability to open the mouth or a severely decreased range of motion of the temporomandibular joint were included. Information on the surgical procedures performed and the perioperative complications were documented. Three-dimensional printing of the skull was performed in four dogs.Results: Two dogs were diagnosed with temporomandibular joint ankylosis and seven dogs with pseudoankylosis. One dog had evidence of combined temporomandibular joint ankylosis and pseudoankylosis. Of the seven dogs with pseudoankylosis, six had an osseous fusion involving the zygomatic arch and mandible. Surgical treatment was performed in nine dogs and a revision surgery was needed in one dog. Follow-up ranged from five months to eight years (mean: 48.6 months). Eight out of nine dogs that were treated surgically regained the ability to open their mouth, but six dogs never regained a fully normal temporomandibular joint range of motion.Clinical significance: Temporomandibular joint ankylosis and pseudoankylosis are uncommon in the dog. Surgical treatment for temporomandibular joint ankylosis or pseudoankylosis in dogs is a successful option and carries a prognosis dependent on patient-specific abnormalities. Computed tomography complemented with three- dimensional printing is valuable for understanding the extent of abnormalities and for preoperative planning.Supplementary material for this paper is available online at http://dx.doi.org/10.3415/VCOT-15-11-0189.


2019 ◽  
Vol 10 ◽  
pp. 204173141882479 ◽  
Author(s):  
Hee-Gyeong Yi ◽  
Yeong-Jin Choi ◽  
Jin Woo Jung ◽  
Jinah Jang ◽  
Tae-Ha Song ◽  
...  

Autologous cartilages or synthetic nasal implants have been utilized in augmentative rhinoplasty to reconstruct the nasal shape for therapeutic and cosmetic purposes. Autologous cartilage is considered to be an ideal graft, but has drawbacks, such as limited cartilage source, requirements of additional surgery for obtaining autologous cartilage, and donor site morbidity. In contrast, synthetic nasal implants are abundantly available but have low biocompatibility than the autologous cartilages. Moreover, the currently used nasal cartilage grafts involve additional reshaping processes, by meticulous manual carving during surgery to fit the diverse nose shape of each patient. The final shapes of the manually tailored implants are highly dependent on the surgeons’ proficiency and often result in patient dissatisfaction and even undesired separation of the implant. This study describes a new process of rhinoplasty, which integrates three-dimensional printing and tissue engineering approaches. We established a serial procedure based on computer-aided design to generate a three-dimensional model of customized nasal implant, and the model was fabricated through three-dimensional printing. An engineered nasal cartilage implant was generated by injecting cartilage-derived hydrogel containing human adipose-derived stem cells into the implant containing the octahedral interior architecture. We observed remarkable expression levels of chondrogenic markers from the human adipose-derived stem cells grown in the engineered nasal cartilage with the cartilage-derived hydrogel. In addition, the engineered nasal cartilage, which was implanted into mouse subcutaneous region, exhibited maintenance of the exquisite shape and structure, and striking formation of the cartilaginous tissues for 12 weeks. We expect that the developed process, which combines computer-aided design, three-dimensional printing, and tissue-derived hydrogel, would be beneficial in generating implants of other types of tissue.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 754 ◽  
Author(s):  
Jia Ming Zhang ◽  
Qinglei Ji ◽  
Huiling Duan

Droplet microfluidics has become the most promising subcategory of microfluidics since it contributes numerous applications to diverse fields. However, fabrication of microfluidic devices for droplet formation, manipulation and applications is usually complicated and expensive. Three-dimensional printing (3DP) provides an exciting alternative to conventional techniques by simplifying the process and reducing the cost of fabrication. Complex and novel structures can be achieved via 3DP in a simple and rapid manner, enabling droplet microfluidics accessible to more extensive users. In this article, we review and discuss current development, opportunities and challenges of applications of 3DP to droplet microfluidics.


2019 ◽  
Vol 20 (9) ◽  
pp. 584-596 ◽  
Author(s):  
Francesca Uccheddu ◽  
Michele Gallo ◽  
Erica Nocerino ◽  
Fabio Remondino ◽  
Miroslava Stolocova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document