Is impulsive violence an addiction? The Habit Hypothesis

CNS Spectrums ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 165-169 ◽  
Author(s):  
Stephen M. Stahl

Impulsive violence may be the behavioral consequence of inefficient information processing within specific neuronal networks. Analogous to the hypothetical pathophysiology of addiction, maladaptations within reward pathways may shift goal-directed behaviors to impulsive reactions and then to compulsive habits, in order to create impulsive violence.

2021 ◽  
Author(s):  
Luna Rizik ◽  
Loai Danial ◽  
Mouna Habib ◽  
Ron Weiss ◽  
Ramez Daniel

Abstract Biological regulatory networks in cells and neuronal networks employ complex circuit topologies with highly interconnected nodes to perform sophisticated information processing. Despite the complexity of neuronal networks, their information processing and computational capabilities can be recapitulated using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Here, we argue that analogous to their revolutionary impact on computing, neuro-inspired models can similarly transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and can be readily reconfigurable for new tasks. We introduce neuromorphic design for synthetic gene circuits by first defining the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in the cellular milieu. Working in Escherichia coli cells, we experimentally demonstrated logarithmic scale analog multiplication using a single perceptgene. We modified perceptgene parameters (weights and biases) to create devices that compute a log-transformed negative rectifier encoding the minimum operation, log-transformed positive rectifier encoding the maximum operation, and log-transformed average of analog inputs. We then created multi-layer perceptgene circuits that compute a majority function, perform analog-to-digital conversion, and implement a ternary switch. Experimental and theoretical analysis showed that our approach enables circuit optimization via artificial intelligence algorithms such as gradient descent and backpropagation. Realizing neural-like computing in the noisy resource-limited environments of individual cells marks an important step towards synthetic biological systems that can be engineered effectively via supervised ANN optimization algorithms.


Author(s):  
Suguru N. Kudoh ◽  
◽  
Takahisa Taguchi ◽  

We provided further insights into "biological" pattern detection. In dissociated neurons, we induced synaptic potentiation, which corresponds to an increase in the weight of connection between neurons of an artificial neural network. We also performed a kind of primary "operation" for a spatiotemporal pattern stored in a cultured neural netwo/k. Results suggest that small-scaled living neuronal networks enable to carry out information processing such as pattern detection. Information processing during pattern manipulation is analyzed using living neuronal networks interacting with artificial electric devices. The goal is an artificial living system in which the neural network recognizes environmental patterns around it and controls its growth conditions. The system is useful both in the context of new applied bioelectro technology and basic neuroscience research.


2007 ◽  
Vol 19 (5) ◽  
pp. 592-600 ◽  
Author(s):  
Suguru N. Kudoh ◽  
◽  
Chie Hosokawa ◽  
Ai Kiyohara ◽  
Takahisa Taguchi ◽  
...  

Rat hippocampal neurons reorganized into complex networks in a culture dish with 64 planar microelectrodes and the electrical activity of neurons were recorded from individual sites. Multi-site recording system for extracellular action potentials was used for recording the activity of living neuronal networks and for applying input from the outer world to the network. The living neuronal network was able to distinguish among patterns of evoked action potentials based on different input, suggesting that the living neuronal network can express several pattern independently, meaning that it has fundamental mechanisms for intelligent information processing. We are developing a “biomodeling system,” in which a living neuronal network is connected to a moving robot with premised control rules corresponding to a genetically provided interface of neuronal networks to peripheral systems. Premised rules are described in fuzzy logic and the robot can generate instinctive behavior, avoiding collision. Sensor input from the robot body was sent to a neuronal network, and the robot moved based on commands from the living neuronal network. This is a good modeling system to analyze interaction between biological information processing and electrical devices.


2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
V Priesemann ◽  
J Lizier ◽  
M Wibral ◽  
ET Bullmore ◽  
O Paulsen ◽  
...  

2011 ◽  
Vol 10 (01) ◽  
pp. 1-11 ◽  
Author(s):  
YUBING GONG ◽  
XIU LIN ◽  
YINGHANG HAO ◽  
XIAOGUANG MA

In this Letter, we study firing transitions induced by a particular kind of non-Gaussian noise (NGN) and coupling in Newman-Watts small-world neuronal networks. It is found that chaotic bursting can be tamed by the coupling and evolves to regular spiking or bursting behavior as the coupling increases. As the NGN's deviation from Gaussian noise changes, the neurons exhibit firing transitions from irregular spiking to regular bursting, and the number of spikes inside per burst varies with the change of the deviation. These results show that the NGN and the coupling play crucial roles in the firing activity of the neurons, and hence are of great importance to the information processing and transmission in the neuronal networks.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184367 ◽  
Author(s):  
Mariana Sacrini Ayres Ferraz ◽  
Hiago Lucas Cardeal Melo-Silva ◽  
Alexandre Hiroaki Kihara

Sign in / Sign up

Export Citation Format

Share Document