scholarly journals 131 A Marionettist Pulling My Strings: A Case of Buprenorphine-induced Chorea

CNS Spectrums ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 282-283
Author(s):  
Dev Patel ◽  
Ishandeep Gandhi ◽  
Faisal Malek ◽  
Camille Olechowski ◽  
Alan R. Hirsch

Abstract:Introduction:Choreaform movements provoked by opiates is an infrequent adverse event. Buprenorphine induction of chorea has not heretofore been described. Such a case is presented.METHOD:Case Study: A 38-year-old female presented with a decade long history of alcohol, cocaine, benzodiazepine, and heroin abuse. The patient was insufflating 1.5 grams of heroin daily. On presentation, she was actively withdrawing, scoring 17 on the Clinical Opioid Withdrawal Scale. Urine toxicology screening was positive for opiates, cocaine, and cannabinoids. Buprenorphine 4 mg sublingual was initiated. Within one hour, she observed, “My legs were moving uncontrollably as if I was a marionette.” These dance-like movements were isolated to both legs and gradually resolved after discontinuation of buprenorphine: most of the movements manifested in the first 8 hours, and dissipated over the next 2 days. She did have similar movements after treatment with quetiapine during a previous hospitalization, years earlier.RESULTS:Abnormalities in physical examination: General: goiter, bilateral palmar erythema. Neurological examination: Cranial Nerve (CN) Examination: CN I: Alcohol Sniff Test: 2 (anosmia). Motor Examination: Drift testing: mild right pronator drift. Reflexes: 3+ bilateral lower extremities. Neuropsychiatric Examination: Clock Drawing Test: 3 (abnormal). Animal Fluency Test: 18 (normal). Go-No-Go Test 6/6 (normal).DISCUSSION:Buprenorphine induced chorea could be a result of partial mu-opioid agonism, or kappa and delta receptor antagonism (Burke, 2018; Cowan, 1977). Mu-opioid receptor activation causes increased dopamine turnover in the nigrostriatum, which is responsible for locomotor sensitization (Campos-Jurado, 2017). With the addition of mu-opioid receptor modulation of dopamine release, kappa-opioid receptor alters various neurotransmitters in the basal ganglia, potentiating hyperkinetic movements. Buprenorphine’s choreiformogenic action may be due to kappa-opioid receptors ability to augment neurotransmission in the striatum (Escobar, 2017; Bonnet, 1998). The combination of simultaneous activity of these three opioid receptors may cause chorea, since they act to modulate dopamine, glutamate, and GABA in the direct and indirect pathways within the basal ganglia (Abin, 1989; Cui, 2013; Allouche, 2014; Trifilieff, 2013). This patient’s history of heroin and cocaine use may have caused supersensitization of dopamine receptors (Memo, 1981), provoking hyperkinesia. Involvement of substance-induced sensitization with concurrent kappa-opioid receptor neurotransmitter augmentation in direct and indirect pathways in the basal ganglia may have primed our patient to the development of chorea after buprenorphine administration. Further investigation for the presence of extrapyramidal movements in those undergoing buprenorphine treatment is warranted.

2021 ◽  
Author(s):  
Nicholas S. Akins ◽  
Nisha Mishra ◽  
Hannah M. Harris ◽  
Narendar Dudhipala ◽  
Seong Jong Kim ◽  
...  

Analgesia is commonly mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. Recently, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold <i>via</i> an ester linker. <i>In vitro</i> studies showed that some of these compounds have dual agonism on kappa and mu opioid receptors, while some have triple agonism on kappa, mu, and delta. <i>In vivo </i>studies on the lead dual kappa and mu opioid receptor agonist, compound <b>10</b>, showed that it<b> </b>produced analgesic activity while avoiding anxiogenic effects in murine models, thus providing further strong evidence for the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


2021 ◽  
pp. 174480692098844
Author(s):  
Chinwe Nwaneshiudu ◽  
Xiao-You Shi ◽  
Peyman Sahbaie ◽  
J. David Clark

Recent reports suggest pain from surgical injury may influence the risks associated with exposure to opioids. In mice, hind-paw incision attenuates morphine-primed reinstatement due to kappa opioid receptor activation by dynorphin. In this focused group of studies, we examined the hypotheses that kappa-opioid receptor activation in the nucleus accumbens mediates attenuated drug- primed reinstatement after incisional surgery, and the G-protein biased mu-opioid agonist, oliceridine, leads to less priming of the dynorphin effect in comparison to morphine. To address these hypotheses, adult C57BL/6 male mice underwent intracranial cannulation for administration of the selective kappa-opioid antagonist norBNI directly into the nucleus accumbens. After recovery, they were conditioned with morphine or oliceridine after hind-paw incisional injury, then underwent extinction followed by opioid-primed reinstatement. Intra-accumbal administration of norBNI was carried out prior to testing. The nucleus accumbens and medial prefrontal cortex were extracted and analyzed for expression of prodynorphin. We observed that animals conditioned with morphine in the setting of incisional injury demonstrated blunted responses to opioid-primed reinstatement, and that the blunted responses were reversed with intra-accumbal norBNI administration. Persistently elevated levels of prodynorphin expression in the medial prefrontal cortex and nucleus accumbens were observed in the incised morphine-treated animals. However, both behavioral and molecular changes were absent in animals with incisional injury conditioned with oliceridine. These findings suggest a role for prodynorphin expression in the nucleus accumbens with exposure to morphine after surgery that may protect individuals from relapse not shared with biased mu- opioid receptor agonists.


Author(s):  
Huiqun Wang ◽  
Danni Cao ◽  
James C Gillespie ◽  
Rolando E Mendez ◽  
Dana E Selley ◽  
...  

The modulation and selectivity mechanisms of seven mixed-action kappa opioid receptor (KOR)/mu opioid receptor (MOR) bitopic modulators were explored. Molecular modeling results indicated that the ‘message’ moiety of seven bitopic modulators shared the same binding mode with the orthosteric site of the KOR and MOR, whereas the ‘address’ moiety bound with different subdomains of the allosteric site of the KOR and MOR. The ‘address’ moiety of seven bitopic modulators bound to different subdomains of the allosteric site of the KOR and MOR may exhibit distinguishable allosteric modulations to the binding affinity and/or efficacy of the ‘message’ moiety. Moreover, the 3-hydroxy group on the phenolic moiety of the seven bitopic modulators induced selectivity to the KOR over the MOR.


2006 ◽  
Vol 105 (4) ◽  
pp. 801-812 ◽  
Author(s):  
Kim K. Lemberg ◽  
Vesa K. Kontinen ◽  
Antti O. Siiskonen ◽  
Kaarin M. Viljakka ◽  
Jari T. Yli-Kauhaluoma ◽  
...  

Background The pharmacology of oxycodone is poorly understood despite its growing clinical use. The discrepancy between its good clinical effectiveness after systemic administration and the loss of potency after spinal administration led the authors to study the pharmacodynamic effects of oxycodone and its metabolites using in vivo and in vitro models in rats. Methods Male Sprague-Dawley rats were used in hot-plate, tail-flick, and paw-pressure tests to study the antinociceptive properties of morphine, oxycodone, and its metabolites oxymorphone and noroxycodone. Mu-opioid receptor agonist-stimulated GTPgamma[S] autoradiography was used to study G-protein activation induced by morphine, oxycodone, and oxymorphone in the rat brain and spinal cord. Spontaneous locomotor activity was measured to assess possible sedation or motor dysfunction. Naloxone and the selective kappa-opioid receptor antagonist nor-binaltorphimine were used to study the opioid receptor selectivity of the drugs. Results Oxycodone showed lower efficacy and potency to stimulate GTPgamma[S] binding in the spinal cord and periaqueductal gray compared with morphine and oxymorphone. This could relate to the fact that oxycodone produced only weak naloxone-reversible antinociception after intrathecal administration. It also suggests that the metabolites may have a role in oxycodone-induced analgesia in rats. Intrathecal oxymorphone produced strong long-lasting antinociception, whereas noroxycodone produced antinociception with very high doses only. Subcutaneous administration of oxycodone and oxymorphone produced thermal and mechanical antinociception that was reversed by naloxone but not by nor-binaltorphimine. Oxymorphone was more potent than oxycodone, particularly in the hot-plate and paw-pressure tests. Conclusions The low intrathecal potency of oxycodone in rats seems be related to its low efficacy and potency to stimulate mu-opioid receptor activation in the spinal cord.


2021 ◽  
Author(s):  
Nicholas S. Akins ◽  
Nisha Mishra ◽  
Hannah M. Harris ◽  
Narendar Dudhipala ◽  
Seong Jong Kim ◽  
...  

Analgesia is commonly mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. Recently, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold <i>via</i> an ester linker. <i>In vitro</i> studies showed that some of these compounds have dual agonism on kappa and mu opioid receptors, while some have triple agonism on kappa, mu, and delta. <i>In vivo </i>studies on the lead dual kappa and mu opioid receptor agonist, compound <b>10</b>, showed that it<b> </b>produced analgesic activity while avoiding anxiogenic effects in murine models, thus providing further strong evidence for the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


Sign in / Sign up

Export Citation Format

Share Document