scholarly journals NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein

RNA ◽  
2002 ◽  
Vol 8 (1) ◽  
pp. 83-96 ◽  
Author(s):  
ERIC S. DEJONG ◽  
WILLIAM F. MARZLUFF ◽  
EDWARD P. NIKONOWICZ
2004 ◽  
Vol 15 (3) ◽  
pp. 1112-1123 ◽  
Author(s):  
David J. Lanzotti ◽  
Jeremy M. Kupsco ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
...  

Stem-loop binding protein (SLBP) is an essential component of the histone pre-mRNA processing machinery. SLBP protein expression was examined during Drosophila development by using transgenes expressing hemagglutinin (HA) epitope-tagged proteins expressed from the endogenous Slbp promoter. Full-length HA-dSLBP complemented a Slbp null mutation, demonstrating that it was fully functional. dSLBP protein accumulates throughout the cell cycle, in contrast to the observed restriction of mammalian SLBP to S phase. dSLBP is located in both nucleus and cytoplasm in replicating cells, but it becomes predominantly nuclear during G2. dSLBP is present in mitotic cells and is down-regulated in G1 when cells exit the cell cycle. We determined whether mutation at previously identified phosphorylation sites, T120 and T230, affected the ability of the protein to restore viability and histone mRNA processing to dSLBP null mutants. The T120A SLBP restored viability and histone pre-mRNA processing. However, the T230A mutant, located in a conserved TPNK sequence in the RNA binding domain, did not restore viability and histone mRNA processing in vivo, although it had full activity in histone mRNA processing in vitro. The T230A protein is concentrated in the cytoplasm, suggesting that it is defective in nuclear targeting, and accounting for its failure to function in histone pre-mRNA processing in vivo.


2005 ◽  
Vol 286 (1) ◽  
pp. 195-206 ◽  
Author(s):  
Patrick Allard ◽  
Qin Yang ◽  
William F. Marzluff ◽  
Hugh J. Clarke

Endocrinology ◽  
2007 ◽  
Vol 149 (2) ◽  
pp. 534-543 ◽  
Author(s):  
John J. Peluso ◽  
Jonathan Romak ◽  
Xiufang Liu

Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1’s role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [3H]P4 binding and the loss of P4’s antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [3H]P4 specifically binds to PGRMC1 at a single site with an apparent Kd of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [3H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70–130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4’s antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1’s capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4’s antiapoptotic action.


2002 ◽  
Vol 76 (23) ◽  
pp. 12008-12022 ◽  
Author(s):  
Brandon L. Walter ◽  
Todd B. Parsley ◽  
Ellie Ehrenfeld ◽  
Bert L. Semler

ABSTRACT The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5′-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.


2012 ◽  
Vol 32 (21) ◽  
pp. 4306-4322 ◽  
Author(s):  
N. Krishnan ◽  
T. T. Lam ◽  
A. Fritz ◽  
D. Rempinski ◽  
K. O'Loughlin ◽  
...  

2003 ◽  
Vol 23 (5) ◽  
pp. 1590-1601 ◽  
Author(s):  
Lianxing Zheng ◽  
Zbigniew Dominski ◽  
Xiao-Cui Yang ◽  
Phillip Elms ◽  
Christy S. Raska ◽  
...  

ABSTRACT The replication-dependent histone mRNAs, the only eukaryotic mRNAs that do not have poly(A) tails, are present only in S-phase cells. Coordinate posttranscriptional regulation of histone mRNAs is mediated by the stem-loop at the 3′ end of histone mRNAs. The protein that binds the 3′ end of histone mRNA, stem-loop binding protein (SLBP), is required for histone pre-mRNA processing and is involved in multiple aspects of histone mRNA metabolism. SLBP is also regulated during the cell cycle, accumulating as cells enter S phase and being rapidly degraded as cells exit S phase. Mutation of any residues in a TTP sequence (amino acids 60 to 62) or mutation of a consensus cyclin binding site (amino acids 99 to 104) stabilizes SLBP in G2 and mitosis. These two threonines are phosphorylated in late S phase, as determined by mass spectrometry (MS) of purified SLBP from late S-phase cells, triggering SLBP degradation. Cells that express a stable SLBP still degrade histone mRNA at the end of S phase, demonstrating that degradation of SLBP is not required for histone mRNA degradation. Nuclear extracts from G1 and G2 cells are deficient in histone pre-mRNA processing, which is restored by addition of recombinant SLBP, indicating that SLBP is the only cell cycle-regulated factor required for histone pre-mRNA processing.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jagjit Singh ◽  
Kavleen Sikand ◽  
Heike Conrad ◽  
Cindy L. Will ◽  
Anton A. Komar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document