Correlation of serum GH and IGF-1 with satellite cell responsiveness in Targhee rams

1996 ◽  
Vol 62 (1) ◽  
pp. 89-96 ◽  
Author(s):  
M. V. Dodson ◽  
K. L. Hossner ◽  
J. L. Vierck ◽  
B. Mathison ◽  
E. Krabbenhoft

AbstractThis study was performed to assess the relationship between serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) levels, slaughter weight, and myogenic satellite cell growth kinetics of Targhee rams. Serum was collected from 19 rams at 15-min intervals over a period of 4h. Radioimmunoassays of serum samples for GH revealed considerable variation (within individual rams) over the sampling period, with mean values ranging from 0·63 to 4·88 μg/l (mean overall 2·3 (s.e. 0·33) μg/l; no. = 19). There was no significant correlation between GH levels and slaughter weight (r = −0·11; P > 0·05) at 155 (s.e. 1·08) days. Serum IGF-1 levels of (individual) rams were invariant over the sampling period, with individual means ranging from 62 to 233 μg/l (mean overall of 117 (s.e. 45·6) ugll; no. = 19). IGF-1 was not strongly correlated with slaughter weight (r = +0·35; P > 0·05). Satellite cells were isolated from the left m. semimembranosus of all rams at slaughter and grown in culture to evaluate proliferation amount and differentiation extent. The correlations between serum GH levels and satellite cell proliferation and differentiation in vitro were r = −0·53 (P < 0·05) and r = −0·52 (P < 0·05), respectively. Serum IGF-1 showed no significant correlations to proliferation (r = +0·07; P > 0·05) or to differentiation (r = −0·07; P > 0·05) of the satellite cells. These data suggest that serum GH levels in Targhee rams may not reflect muscle growth potential if correlated to body weight of 155 days. Furthermore, as IGF-1 was not correlated significantly with slaughter weight or to variables of satellite cell proliferation and differentiation, another mode of satellite cell regulation (possibly paracrine controllers) is more likely at play to coordinate the satellite cell involvement in muscle growth in Targhee rams at 155 days.

2002 ◽  
Vol 282 (4) ◽  
pp. C899-C906 ◽  
Author(s):  
N. T Mesires ◽  
M. E. Doumit

Age-related changes in satellite cell proliferation and differentiation during rapid growth of porcine skeletal muscle were examined. Satellite cells were isolated from hindlimb muscles of pigs at 1, 7, 14, and 21 wk of age (4 animals/age group). Satellite cells were separated from cellular debris by using Percoll gradient centrifugation and were adsorbed to glass coverslips for fluorescent immunostaining. Positive staining for neural cell adhesion molecule (NCAM) distinguished satellite cells from nonmyogenic cells. The proportion of NCAM-positive cells (satellite cells) in isolates decreased from 1 to 7 wk of age. Greater than 77% of NCAM-positive cells were proliferating cell nuclear antigen positive at all ages studied. Myogenin-positive satellite cells decreased from 30% at 1 wk to 14% at 7 wk of age and remained at constant levels thereafter. These data indicate that a high percentage of satellite cells remain proliferative during rapid postnatal muscle growth. The reduced proportion of myogenin-positive cells during growth may reflect a decrease in the proportion of differentiating satellite cells or accelerated incorporation of myogenin-positive cells into myofibers.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 97-97
Author(s):  
Zong-ming Zhang ◽  
Chun-qi Gao ◽  
Hui-chao Yan ◽  
Xiu-qi Wang

Abstract Wnt/β-catenin plays a crucial role in skeletal muscle growth, but its specific mechanism still unclear. In this study, due to the distinct role of lysine in pig industry, we provided it as an entry point to investigate the role of Wnt/β-catenin in governing skeletal muscle growth. Firstly, total 18 weaned piglets were divided into three groups: control group, lysine deficiency group and lysine re-supplementation group (lysine levels added from 0.83% to 1.31% at 14 d). After 28 d experiment, all pigs were slaughtered to measure the change of Wnt/β-catenin in skeletal muscle. Secondly, satellite cell (SC) was isolated and cultured with Wnt activator, such as Wnt3a and WRN (Wnt3a, R-spondin1, Noggin) after lysine deficiency for 48 h to investigate cell proliferation and differentiation ability and the level of Wnt/β-catenin in different conditions. The results showed that compared with the control group, lysine deficiency significantly reduced longissimus dorsi muscle weight and Pax7 positive SC, and inhibited Wnt/β-catenin (P &lt; 0.05). Fortunately, these restrictions were rescued to the control levels by lysine re-supplementation (P &gt; 0.05). Meanwhile, compared with the lysine deficiency group, the MTT and western blotting assay showed cell proliferation ability was significantly increased with re-activated Wnt/β-catenin by re-supplemented lysine, Wnt3a or WRN (P &lt; 0.05), respectively. Moreover, under the condition of cell differentiation, compared with the control group, cell fusion index was significantly decreased in the lysine deficiency group (P &lt; 0.05), whereas it was significantly increased with lysine re-supplementation group, Wnt3a or WRN respective supplementation group in comparison with the lysine deficiency group (P &lt; 0.05). In addition, compared with the lysine deficiency group, the protein levels of myogenic regulatory factors and Wnt/β-catenin pathway were also re-activated by re-supplemented lysine, Wnt3a or WRN (P &lt; 0.05). Collectively, we found Wnt/β-catenin activation is required for porcine SC proliferation and differentiation to promote skeletal muscle growth.


Sign in / Sign up

Export Citation Format

Share Document