Factors affecting folliculogenesis in ruminants

1999 ◽  
Vol 68 (2) ◽  
pp. 257-284 ◽  
Author(s):  
R. Webb ◽  
R. G. Gosden ◽  
E. E. Telfer ◽  
R. M. Moor

AbstractThis review addresses the reasons for the lack of progress in the control of superovulation and highlights the importance of understanding the mechanisms underlying follicular development. The present inability to provide large numbers of viable embryos from selected females still restricts genetic improvement, whilst variability in ovarian response to hormones limit the present capacity for increasing reproductive efficiency.Females are born with a large store of eggs which rapidly declines as puberty approaches. If these oocytes are normal then there is scope for increasing the reproductive potential of selected females. Oocytes must reach a certain size before they can complete all stages of development and the final changes that occur late in follicular development. It is likely that oocytes that do not produce specific factors at precise stages of development will not be viable. Hence, it is important to characterize oocyte secreted factors since there are potential indicators of oocyte quality.The mechanisms that determine ovulation rate have still not been fully elucidated. Indeed follicular atresia, the process whereby follicles regress, is still not known. A better understanding of these processes should prove pivotal for the synchronization of follicular growth, for more precise oestrous synchronization and improved superovulatory response.Nutrition can influence a whole range of reproductive parameters however, the pathways through which nutrition acts have not been fully elucidated. Metabolic hormones, particularly insulin and IGFs, appear to interact with gonadotrophins at the level of the gonads. Certainly gonadotropins provide the primary drive for the growth of follicles in the later stages of development and both insulin and IGF-1, possibly IGF-2, synergize with gonadotrophins to stimulate cell proliferation and hormone production. More research is required to determine the effects of other growth factors and their interaction with gonadotropins.There is evidence, particularly from studies with rodents, that steroids can also modulate follicular growth and development, although information is very limited for ruminants. There may be a rôle for oestrogens in synchronizing follicular waves, to aid in oestrous synchronization regimes and for removing the dominant follicle to achieve improved superovulatory responses. However more information is required to determine whether these are feasible approaches.Heritability for litter size is higher in sheep than in cattle. Exogenous gonadotropins are a commercially ineffective means of inducing twinning in sheep and cattle. Although there are differences in circulating gonadotropin concentrations, the mechanism(s) responsible for the high ovulation appear to reside essentially within the ovaries. The locus of the Booroola gene, a major gene for ovulation rate, has been established but not specifically identified. However sheep possessing major genes do provide extremely valuable models for investigating the mechanisms controlling ovulation rate, including a direct contrast to mono-ovulatory species such as cattle.In conclusion, the relationship between oocyte quality, in both healthy follicles and those follicles destined for atresia, must be resolved before the future potential for increasing embryo yield can be predicted. In addition, a greater understanding of the factors affecting folliculogenesis in ruminants should ensure that the full benefits ensuing from the precise control of ovarian function are achieved. The improved use of artificial insemination and embryo transfer that would ensue from a greater understanding of the processes of folliculo genesis, coupled with the new technologies of genome and linkage mapping, should ensure a more rapid rate of genetic gain.

Author(s):  
C. Chetan Kumar ◽  
B. Rambabu Naik ◽  
A.V.N. Siva Kumar ◽  
A. Ravi ◽  
L.S.S. Varaprasad Reddy ◽  
...  

Background: Melatonin, a powerful free radical scavenger and broad-spectrum antioxidant may directly affect ovarian function by regulating folliculogenesis, maintenance of follicular integrity, oocyte quality and maturation capacity. Therefore, we aimed to study effects of melatonin and its interaction with growth factors in sheep preantral follicles. Methods: The influence of different concentrations of Melatonin (5-500 pM) on in vitro culture of preantral follicles (PFs’) isolated from sheep ovaries was studied. Experiments I and II were conducted to standardize the optimum concentration of Melatonin that supports better development of preantral follicles. Experiment III was conducted with the optimum level of Melatonin derived in the Experiments I and II to evaluate the effect of melatonin at 100pM in combination with various growth factors. Result: Overall follicular development was found to be the best in the PFs’ cultured in medium supplemented with 100pM of Melatonin. Melatonin supplementation showed positive effects on the preantral follicular development in combination with different growth factors.


2011 ◽  
Vol 23 (3) ◽  
pp. 444 ◽  
Author(s):  
R. J. Scaramuzzi ◽  
D. T. Baird ◽  
B. K. Campbell ◽  
M.-A. Driancourt ◽  
J. Dupont ◽  
...  

The paper presents an update of our 1993 model of ovarian follicular development in ruminants, based on knowledge gained from the past 15 years of research. The model addresses the sequence of events from follicular formation in fetal life, through the successive waves of follicular growth and atresia, culminating with the emergence of ovulatory follicles during reproductive cycles. The original concept of five developmental classes of follicles, defined primarily by their responses to gonadotrophins, is retained: primordial, committed, gonadotrophin-responsive, gonadotrophin-dependent and ovulatory follicles. The updated model has more extensive integration of the morphological, molecular and cellular events during folliculogenesis with systemic events in the whole animal. It also incorporates knowledge on factors that influence oocyte quality and the critical roles of the oocyte in regulating follicular development and ovulation rate. The original hypothetical mechanisms determining ovulation rate are retained but with some refinements; the enhanced viability of gonadotrophin-dependent follicles and increases in the number of gonadotrophin-responsive follicles by increases in the throughput of follicles to this stage of growth. Finally, we reexamine how these two mechanisms, which are thought not to be mutually exclusive, appear to account for most of the known genetic and environmental effects on ovulation rate.


1992 ◽  
Vol 134 (1) ◽  
pp. 11-18 ◽  
Author(s):  
R. G. Glencross ◽  
E. C. L. Bleach ◽  
B. J. McLeod ◽  
A. J. Beard ◽  
P. G. Knight

ABSTRACT To study the effects of immunoneutralization of endogenous inhibin on gonadotrophin secretion and ovarian function, prepubertal heifers (n = 6) were actively immunized against a synthetic peptide replica of the N-terminal sequence of bovine inhibin α subunit bIα(1–29)Tyr30) coupled to ovalbumin. In contrast to ovalbumin-immunized controls (n=6), bIα(1–29)Tyr30-immunized heifers had detectable inhibin antibody titres (% binding to 125I-labelled bovine inhibin at 1:2000 dilution of plasma) of 17 ± 3% (s.e.m.) at puberty, rising to 31 ± 5% by the end of the study period 7 months later. Neither age (immunized: 295 ± 8 days; controls: 300 ± 5 days) nor body weight (immunized: 254 ± 13 kg; controls 251 ± 9 kg) at onset of puberty differed between groups. Although the difference did not reach statistical significance, mean plasma FSH concentrations recorded in inhibin-immunized heifers remained 35–40% higher than in controls throughout the 12-week period leading up to puberty (P = 0·14) and during nine successive oestrous cycles studied after puberty (P=0·10). Plasma LH concentrations did not differ between groups at any time during the study. Inhibin immunization had no effect on oestrous cycle length (immunized: 19·8±0·5 days; controls: 19·9±0·5 days). However, in comparison with controls, inhibinimmunized heifers had more medium sized (≥0·5 to <1 cm diameter) follicles during both the preovulatory (95%, P<0·001) and post-ovulatory (110%, P < 0·05 waves of follicular growth and more large (>1 cm diameter) follicles during the preovulatory wave (49%, P<0·05). In addition, the number of corpora lutea observed during the post-ovulatory phase of each cycle was significantly greater in the inhibin-immunized group (43%, P<0·01), as was the recorded incidence of cycles with multiple ovulations (19/56 in the inhibin-immunized group compared with 0/54 in controls; P<0·001). All six inhibinimmunized heifers had at least one cycle with multiple ovulation whereas none of the control heifers did so. These results support the conclusion that immunoneutralization of endogenous inhibin using a synthetic peptide-based vaccine can enhance ovarian follicular development and ovulation rate in heifers. Whether this ovarian response is dependent upon the expected increase in secretion of FSH remains to be established. Journal of Endocrinology (1992) 134, 11–18


Reproduction ◽  
2009 ◽  
Vol 138 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Jennifer L Juengel ◽  
Norma L Hudson ◽  
Martin Berg ◽  
Keith Hamel ◽  
Peter Smith ◽  
...  

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are essential for ovarian follicular growth in sheep, whereas only GDF9 is essential in mice suggesting that the roles of these oocyte-derived growth factors differ among species. At present, however, there is only limited information on the action of BMP15 and GDF9 in other species. Thus, the aim of this experiment was to determine the effect of neutralizing GDF9 and/or BMP15in vivoon ovarian follicular development and ovulation rate in cattle through active immunization using the mature regions of the proteins or peptides from the N-terminal area of mature regions. Immunization with the BMP15 peptide, with or without GDF9 peptide, significantly altered (increased or decreased) ovulation rate. In some animals, there were no functional corpora lutea (CL), whereas in others up to four CL were observed. From morphometric examination of the ovaries, immunization with GDF9 and/or BMP15 reduced the level of ovarian follicular development as assessed by a reduced proportion of the ovarian section occupied by antral follicles. In addition, immunization against GDF9 and/or BMP15 peptides reduced follicular size to <25% of that in the controls. In conclusion, immunization against GDF9 and BMP15, alone or together, altered follicular development and ovulation rate in cattle. Thus, as has been observed in sheep, both GDF9 and BMP15 appear to be key regulators of normal follicular development and ovulation rate in cattle.


1996 ◽  
Vol 1996 ◽  
pp. 95-95
Author(s):  
A.R. Peters ◽  
S.J. Ward ◽  
P.J. Gordon ◽  
G.E. Mann

Fertility after prostaglandin (PG) may be compromised by the variability in timing of oestrus and ovulation, which are in turn influenced by the ovarian follicular status at the time of injection. Gonadotrophin-releasing hormone (GnRH) treatment in the luteal phase a few days before PG can reprogramme and thus synchronise preovulatory follicle development (Wolfenson et al., 1994). A second GnRH treatment can then be given after PG, to further improve the synchrony of ovulation (Pursley et al., 1995). The present experiment was carried out to test the effect of this combined GnRH - PG - GnRH regime on ovarian function and steroid hormone production in dairy cows.


2003 ◽  
Vol 83 (4) ◽  
pp. 659-671 ◽  
Author(s):  
S. Bilodeau-Goeseels ◽  
J. P. Kastelic

Embryonic mortality in cattle is the death of the conceptus before Day 42 of pregnancy. Estimates of embryonic mortality varied greatly, ranging from 10 to 40% in first-service cattle to 65% in repeat-breeder cows. This paper reviews endogenous causes of embryonic mortality, including chromosomal abnormalities, inadequate corpus luteum function and the influence of follicular development on fertility. External causes of embryonic mortality, including heat stress and nutrition, are also reviewed; these factors act by modifying the follicular environment (thereby affecting oocyte quality) or by creating a hostile uterine environment. Strategies to reduce embryonic mortality, including good management practices and supplementation with progesterone or interferon-tau, are discussed. From a practical perspective, improved knowledge of the causes of embryonic mortality and regulation of follicular growth and corpus luteum function should result in the development of improved, cost-effective hormonal regimes that effectively synchronize estrus and ovulation and reduce embryonic mortality, thereby benefiting the cattle industry. Key words: Cattle, reproduction, fertility, embryo development, embryo mortality


2021 ◽  
Author(s):  
◽  
Elisabeth Sheinach Feary

<p>Fecundity is a term that refers to the number of offspring produced per female. It combines fertility (i.e. ability to produce offspring) and prolificacy (i.e. number of offspring). Ovulation rate i.e. the number of mature eggs released from the ovaries during one reproductive cycle in sheep, as with other mammals, is controlled by an exchange of hormonal signals between the pituitary gland and the ovary. Genetic mutations affecting ovulation are commonly referred to as the fecundity genes (Fec). The most obvious outcome is the number of offspring produced. There is already evidence of a number of major genes affecting the ovulation rate in sheep, specifically the Booroola, Inverdale, Hanna and more recently the Woodlands gene. The sheep carrying the Woodlands gene arose because the mutation was first recognised on a farm in Woodlands, Southland, New Zealand. Woodlands have a novel, X-linked maternally-imprinted, fecundity trait referred to as FecX2w, where Fec = fecundity, X = X chromosome, 2= 2nd mutation identified on X and W= Woodlands. The studies in this thesis investigated ovarian follicular development in both 4-week old Woodland carrier (W+) and non-carrier (++) lambs and adult ewes and evaluated some aspects of the endocrine interactions between the ovary and pituitary gland. The purpose was to identify potential physiological effects of the FecX2w gene on ovarian function. A confounding issue during these studies was the discovery that a large ovary phenotype (LOP) which was present in many of the W+ but not ++ lambs at 4 weeks of age was in fact a coincidence and not linked to the FecX2w mutation. The key findings from the studies of lambs and/or ewes that were carriers (W+) or non-carriers (++) of the FecX2w gene were: 1. No genotype differences were present either in the numbers of primordial (i.e. Type 1/1a follicles) or developing preantral (i.e. Types 2-4 follicles); 2. Significant genotype differences were present in the numbers of small antral (Type 5) follicles (W+>++; p<0.05); 3. An earlier onset of antral follicular development in W+ vs. ++ ewes with irregularities in morphology between the basement membrane and stroma in the former; 4. No genotype differences in the onset of gene expression during follicular development or in the cell-types expressing GDF9, BMP15, alpha inhibin, beta A inhibin and beta B inhibin, FSHR, ER alpha, or ER beta; 5. No genotype differences in the levels of GDF9 or BMP15 gene expression in oocytes throughout follicular growth; 6. No genotype difference in the diameters that follicles reached in W+ vs. ++ ewes; 7. Some lambs at 4-weeks of age had unusually large ovaries with an exceptional level of antral follicular development that is reminiscent of a polycystic ovarian condition. The underlying cause of this condition is unknown. In conclusion, the physiological characteristics of ovarian follicular development in ewes with the FecX2w gene is different from that in ewes with the Booroola, Inverdale, Hanna or other recently identified mutations.</p>


Zygote ◽  
2011 ◽  
Vol 20 (2) ◽  
pp. 181-192 ◽  
Author(s):  
B. Dorphin ◽  
M. Prades-Borio ◽  
A. Anastacio ◽  
P. Rojat ◽  
C. Coussieu ◽  
...  

SummaryIn vitro folliculogenesis could be a new technology to produce mature oocytes from immature follicles that have been isolated from cryopreserved or fresh ovarian tissue. This technique could also be a tool for evaluation of oocyte quality and/or for determination of follicular parameters during follicular growth. Our objective was to characterize in mice the secretion profiles of follicles that had been isolated mechanically during in vitro follicular growth and in relation to the growth curve. Early preantral follicles from fresh prepubertal and adult mouse ovaries or frozen–thawed prepubertal mouse ovaries were cultured individually in microdrops under oil for 12 days. Each day, two perpendicular diameters of the follicles were measured. From day-3 to day-12 of culture, culture medium was collected and preserved for determination of inhibin B, anti-Müllerian hormone (AMH) and estradiol levels. At the end of the culture, after maturation, the status of the oocyte was evaluated. Follicular growth and their individual hormone production did not always correlate. Inhibin B was never secreted from follicles of less than 200 μm diameter, whether the follicles were examined when fresh or after freezing–thawing. Estradiol secretion was never observed in frozen–thawed follicles. AMH was mainly secreted between day-3 and day-9. Despite similar morphological aspects at the start of culture, follicles selected for in vitro folliculogenesis were found to be heterogeneous and differed in their ability to grow and to produce hormones, even if they had similar growth curves. Follicles from frozen–thawed ovaries developed slowly and produced fewer hormones than freshly collected follicles.


Sign in / Sign up

Export Citation Format

Share Document