large ovary
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Elisabeth Sheinach Feary

<p>Fecundity is a term that refers to the number of offspring produced per female. It combines fertility (i.e. ability to produce offspring) and prolificacy (i.e. number of offspring). Ovulation rate i.e. the number of mature eggs released from the ovaries during one reproductive cycle in sheep, as with other mammals, is controlled by an exchange of hormonal signals between the pituitary gland and the ovary. Genetic mutations affecting ovulation are commonly referred to as the fecundity genes (Fec). The most obvious outcome is the number of offspring produced. There is already evidence of a number of major genes affecting the ovulation rate in sheep, specifically the Booroola, Inverdale, Hanna and more recently the Woodlands gene. The sheep carrying the Woodlands gene arose because the mutation was first recognised on a farm in Woodlands, Southland, New Zealand. Woodlands have a novel, X-linked maternally-imprinted, fecundity trait referred to as FecX2w, where Fec = fecundity, X = X chromosome, 2= 2nd mutation identified on X and W= Woodlands. The studies in this thesis investigated ovarian follicular development in both 4-week old Woodland carrier (W+) and non-carrier (++) lambs and adult ewes and evaluated some aspects of the endocrine interactions between the ovary and pituitary gland. The purpose was to identify potential physiological effects of the FecX2w gene on ovarian function. A confounding issue during these studies was the discovery that a large ovary phenotype (LOP) which was present in many of the W+ but not ++ lambs at 4 weeks of age was in fact a coincidence and not linked to the FecX2w mutation. The key findings from the studies of lambs and/or ewes that were carriers (W+) or non-carriers (++) of the FecX2w gene were: 1. No genotype differences were present either in the numbers of primordial (i.e. Type 1/1a follicles) or developing preantral (i.e. Types 2-4 follicles); 2. Significant genotype differences were present in the numbers of small antral (Type 5) follicles (W+>++; p<0.05); 3. An earlier onset of antral follicular development in W+ vs. ++ ewes with irregularities in morphology between the basement membrane and stroma in the former; 4. No genotype differences in the onset of gene expression during follicular development or in the cell-types expressing GDF9, BMP15, alpha inhibin, beta A inhibin and beta B inhibin, FSHR, ER alpha, or ER beta; 5. No genotype differences in the levels of GDF9 or BMP15 gene expression in oocytes throughout follicular growth; 6. No genotype difference in the diameters that follicles reached in W+ vs. ++ ewes; 7. Some lambs at 4-weeks of age had unusually large ovaries with an exceptional level of antral follicular development that is reminiscent of a polycystic ovarian condition. The underlying cause of this condition is unknown. In conclusion, the physiological characteristics of ovarian follicular development in ewes with the FecX2w gene is different from that in ewes with the Booroola, Inverdale, Hanna or other recently identified mutations.</p>


2021 ◽  
Author(s):  
◽  
Elisabeth Sheinach Feary

<p>Fecundity is a term that refers to the number of offspring produced per female. It combines fertility (i.e. ability to produce offspring) and prolificacy (i.e. number of offspring). Ovulation rate i.e. the number of mature eggs released from the ovaries during one reproductive cycle in sheep, as with other mammals, is controlled by an exchange of hormonal signals between the pituitary gland and the ovary. Genetic mutations affecting ovulation are commonly referred to as the fecundity genes (Fec). The most obvious outcome is the number of offspring produced. There is already evidence of a number of major genes affecting the ovulation rate in sheep, specifically the Booroola, Inverdale, Hanna and more recently the Woodlands gene. The sheep carrying the Woodlands gene arose because the mutation was first recognised on a farm in Woodlands, Southland, New Zealand. Woodlands have a novel, X-linked maternally-imprinted, fecundity trait referred to as FecX2w, where Fec = fecundity, X = X chromosome, 2= 2nd mutation identified on X and W= Woodlands. The studies in this thesis investigated ovarian follicular development in both 4-week old Woodland carrier (W+) and non-carrier (++) lambs and adult ewes and evaluated some aspects of the endocrine interactions between the ovary and pituitary gland. The purpose was to identify potential physiological effects of the FecX2w gene on ovarian function. A confounding issue during these studies was the discovery that a large ovary phenotype (LOP) which was present in many of the W+ but not ++ lambs at 4 weeks of age was in fact a coincidence and not linked to the FecX2w mutation. The key findings from the studies of lambs and/or ewes that were carriers (W+) or non-carriers (++) of the FecX2w gene were: 1. No genotype differences were present either in the numbers of primordial (i.e. Type 1/1a follicles) or developing preantral (i.e. Types 2-4 follicles); 2. Significant genotype differences were present in the numbers of small antral (Type 5) follicles (W+>++; p<0.05); 3. An earlier onset of antral follicular development in W+ vs. ++ ewes with irregularities in morphology between the basement membrane and stroma in the former; 4. No genotype differences in the onset of gene expression during follicular development or in the cell-types expressing GDF9, BMP15, alpha inhibin, beta A inhibin and beta B inhibin, FSHR, ER alpha, or ER beta; 5. No genotype differences in the levels of GDF9 or BMP15 gene expression in oocytes throughout follicular growth; 6. No genotype difference in the diameters that follicles reached in W+ vs. ++ ewes; 7. Some lambs at 4-weeks of age had unusually large ovaries with an exceptional level of antral follicular development that is reminiscent of a polycystic ovarian condition. The underlying cause of this condition is unknown. In conclusion, the physiological characteristics of ovarian follicular development in ewes with the FecX2w gene is different from that in ewes with the Booroola, Inverdale, Hanna or other recently identified mutations.</p>


2019 ◽  
Vol 57 (6) ◽  
pp. 657-664
Author(s):  
Woon-Mok Sohn ◽  
Byoung-Kuk Na ◽  
Dongmin Lee ◽  
Keeseon S. Eom ◽  
Tai-Soon Yong ◽  
...  

We identified the echinostome metacercariae in Chinese mystery snails, <i>Cipangopaludina</i> <i>chinensis</i> <i>malleata</i>, from Xiengkhuang Province, Lao PDR with morphologies of adult worms recovered. Total 20 snails were examined with artificial digestion method and then the collected metacercariae were orally infected to a mouse and a rat. Adult worms recovered from experimental animals were observed with a light microscope and a SEM. The metacercariae were round, 125×123 µm in average size, with a moderately thick cyst wall, collar spines distributed in the head collar and excretory granules in 2 canals of excretory tube. Adult flukes (3-week-old in a rat) were elongated, ventrally curved and 5.310×1.023 mm in average size. Head collar distinct, bearing 43 collar spines with 5 end group ones on each side. Oral sucker subterminal, prepharynx very short, pharynx well developed, and esophagus relatively short. Cirrus sac well developed, with a saccular seminal vesicle, and ventral sucker very large. Ovary round and on the median line of the body. Testes tandom and elongated. Eggs operculated, elliptical and 90×57 µm in average size. In the SEM observation, the head crown prominent, with 43 collar spines resembled with horns of younger stag. Scale-like tegumental spines were densely distributed on the surface between the head collar and ventral sucker, and their densities were decreased posteriorly. Conclusively, the metacercariae detected in <i>C</i>. <i>chinensis</i> <i>malleata</i> from Lao PDR were identified as those of <i>Echinostoma</i> <i>macrorchis</i> based on the morphological characteristics of adult worms.


2005 ◽  
Vol 17 (9) ◽  
pp. 101
Author(s):  
E. S. Feary ◽  
J. L. Juengel ◽  
P. Smith ◽  
A. R. O'Connell ◽  
G. H. Davis ◽  
...  

Woodlands are a line of Coopworth sheep with a novel, imprinted X-linked fecundity allele resulting in ovulation rates about 0.40 higher than wild-type animals. Daughters of progeny tested sires with and without the gene were studied. Previously, lambs heterozygous for the Woodlands allele were found to have larger ovaries and more antral (i.e. type 5) but not preantral (i.e. types 1–4) follicles than in wild-type contemporaries. The large ovary phenotype was found to be transient and was absent after puberty. However, based on follow-up studies it was evident that the large ovary phenotype was not strongly associated with the Woodlands fecundity allele. Thus, it was uncertain whether animals carrying the Woodlands gene had different follicular populations compared to wild-type controls. To address this question, follicular populations were compared in adult ewes heterozygous for the Woodlands allele with age-matched controls. Using standard morphometric methods and histological analysis, no differences were observed in the mean numbers of types 1, 1a, 2, 3 and 4 preantral follicles between the genotypes. Furthermore, no differences were observed between genotypes in follicular or oocyte diameters for any follicular type. The adult Woodlands carrier ewes had twice as many small type 5 follicles (< 1mm) when compared to wild-type contemporaries although no difference was seen in the numbers of antral follicles > 1mm in diameter. In addition, antrum formation occurred at a smaller follicular diameter in the heterozygous Woodlands animals. Therefore, the increased number of antral follicles observed in both lambs and adult ewes suggests that this difference in pattern of follicular development is associated with the X-linked fecundity allele. This novel phenotype of early antrum formation and larger number of small preantral follicles differs from that observed in sheep with the Inverdale or Booroola mutations, suggesting that a different mechanistic pathway is involved. Acknowledgements: The Marsden Fund, FRST and Ovita.


1999 ◽  
Vol 77 (4) ◽  
pp. 582-598 ◽  
Author(s):  
LP Ronse Decraene ◽  
E F Smets

Floral development and anatomy of Carica papaya L. have been investigated to shed light on (i) the morphology of the flower, (ii) the structural basis for the pollination mechanism, and (iii) the relationships of the Caricaceae. Carica is mostly dioecious with a strong dimorphism between staminate and pistillate flowers. The development of staminate flowers resembles that of pistillate flowers up to the initiation of the stamens. Further development leads to highly diverging morphologies. In staminate flowers a combination of contorted growth and the development of a common stamen-petal tube produces a long floral tube. The gynoecium grows into a central spearlike pistillode. The pistillate flowers have no traces of stamens and initiate five antesepalous carpel primordia. Common basal growth leads to the development of a large ovary with staglike stigmatic lobes and intruding placentae covered with numerous ascending ovules. Floral anatomy of staminate and pistillate flowers is described. The nature of the colleters is discussed. The morphological basis for reward production in C. papaya is clarified, and conflicting views on pollination are discussed. Nectaries of staminate flowers are located on the central rudimentary pistil and not at the base of the stamens, as previously reported. The anthers contain packages of calcium oxalate crystals. Pistillate flowers produce no nectar but have a stigmatic exudate. We compared the floral development and anatomy of Carica with that of Adenia (Passifloraceae) and Moringa (Moringaceae) in the view of a relationship with other glucosinolate-producing families. Although a derivation of the unisexual flowers from bisexual ancestors is probable, Storey's hypothetical derivation of pistillate flowers is not supported by the floral ontogeny and vasculature.Key words: Adenia, Caricaceae, Moringa anatomy, calcium oxalate packages, dioecy, floral structure, nectaries, ontogeny, pollination, systematic relationships.


Sign in / Sign up

Export Citation Format

Share Document