Popper and the Quantum Theory

1995 ◽  
Vol 39 ◽  
pp. 163-176
Author(s):  
Michael Redhead

Popper wrote extensively on the quantum theory. In Logic der Forschung (LSD) he devoted a whole chapter to the topic, while the whole of Volume 3 of the Postscript to the Logic of Scientific Discovery is devoted to the quantum theory. This volume entitled Quantum Theory and the Schism in Physics (QTSP) incorporated a famous earlier essay, ‘Quantum Mechanics without “the Observer”’ (QM). In addition Popper's development of the propensity interpretation of probability was much influenced by his views on the role of probability in quantum theory, and he also wrote an insightful critique of the 1936 paper of Birkhoff and von Neumann on nondistributive quantum logic (BNIQM).

2015 ◽  
Vol 45 (5) ◽  
pp. 641-702 ◽  
Author(s):  
Jeremiah James ◽  
Christian Joas

As part of an attempt to establish a new understanding of the earliest applications of quantum mechanics and their importance to the overall development of quantum theory, this paper reexamines the role of research on molecular structure in the transition from the so-called old quantum theory to quantum mechanics and in the two years immediately following this shift (1926–1928). We argue on two bases against the common tendency to marginalize the contribution of these researches. First, because these applications addressed issues of longstanding interest to physicists, which they hoped, if not expected, a complete quantum theory to address, and for which they had already developed methods under the old quantum theory that would remain valid under the new mechanics. Second, because generating these applications was one of, if not the, principal means by which physicists clarified the unity, generality, and physical meaning of quantum mechanics, thereby reworking the theory into its now commonly recognized form, as well as developing an understanding of the kinds of predictions it generated and the ways in which these differed from those of the earlier classical mechanics. More broadly, we hope with this article to provide a new viewpoint on the importance of problem solving to scientific research and theory construction, one that might complement recent work on its role in science pedagogy.


2020 ◽  
Vol 2 (4) ◽  
pp. 600-616
Author(s):  
Andrea Oldofredi

It is generally accepted that quantum mechanics entails a revision of the classical propositional calculus as a consequence of its physical content. However, the universal claim according to which a new quantum logic is indispensable in order to model the propositions of every quantum theory is challenged. In the present essay, we critically discuss this claim by showing that classical logic can be rehabilitated in a quantum context by taking into account Bohmian mechanics. It will be argued, indeed, that such a theoretical framework provides the necessary conceptual tools to reintroduce a classical logic of experimental propositions by virtue of its clear metaphysical picture and its theory of measurement. More precisely, it will be shown that the rehabilitation of a classical propositional calculus is a consequence of the primitive ontology of the theory, a fact that is not yet sufficiently recognized in the literature concerning Bohmian mechanics. This work aims to fill this gap.


Author(s):  
Peter Forrest

The topic of quantum logic was introduced by Birkhoff and von Neumann (1936), who described the formal properties of a certain algebraic system associated with quantum theory. To avoid begging questions, it is convenient to use the term ‘logic’ broadly enough to cover any algebraic system with formal characteristics similar to the standard sentential calculus. In that sense it is uncontroversial that there is a logic of experimental questions (for example, ‘Is the particle in region R?’ or ‘Do the particles have opposite spins?’) associated with any physical system. Having introduced this logic for quantum theory, we may ask how it differs from the standard sentential calculus, the logic for the experimental questions in classical mechanics. The most notable difference is that the distributive laws fail, being replaced by a weaker law known as orthomodularity. All this can be discussed without deciding whether quantum logic is a genuine logic, in the sense of a system of deduction. Putnam argued that quantum logic was indeed a genuine logic, because taking it as such solved various problems, notably that of reconciling the wave-like character of a beam of, say, electrons, as it passes through two slits, with the thesis that the electrons in the beam go through one or other of the two slits. If Putnam’s argument succeeds this would be a remarkable case of the empirical defeat of logical intuitions. Subsequent discussion, however, seems to have undermined his claim.


2004 ◽  
Vol 2004 (1) ◽  
pp. 75-83 ◽  
Author(s):  
R. C. Bishop ◽  
A. Bohm ◽  
M. Gadella

Time asymmetry and irreversibility are signal features of our world. They are the reason of our aging and the basis for our belief that effects are preceded by causes. These features have many manifestations called arrows of time. In classical physics, some of these arrows are described by the increase of entropy or probability, and others by time-asymmetric boundary conditions of time-symmetric equations (e.g., Maxwell or Einstein). However, there is some controversy over whether probability or boundary conditions are more fundamental. For quantum systems, entropy increase is usually associated with the effects of an environment or measurement apparatus on a quantum system and is described by the von Neumann-Liouville equation. But since the traditional (von Neumann) axioms of quantum mechanics do not allow time-asymmetric boundary conditions for the dynamical differential equations (Schrödinger or Heisenberg), there is no quantum analogue of the radiation arrow of time. In this paper, we review consequences of a modification of a fundamental axiom of quantum mechanics. The new quantum theory is time asymmetric and accommodates an irreversible time evolution of isolated quantum systems.


2007 ◽  
Vol 72 (2) ◽  
pp. 625-648 ◽  
Author(s):  
Masanao Ozawa

AbstractIn 1981, Takeuti introduced quantum set theory as the quantum counterpart of Boolean valued models of set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed subspaces in a Hilbert space and showed that appropriate quantum counterparts of ZFC axioms hold in the model. Here, Takeuti's formulation is extended to construct a model of set theory based on the logic represented by the lattice of projections in an arbitrary von Neumann algebra. A transfer principle is established that enables us to transfer theorems of ZFC to their quantum counterparts holding in the model. The set of real numbers in the model is shown to be in one-to-one correspondence with the set of self-adjoint operators affiliated with the von Neumann algebra generated by the logic. Despite the difficulty pointed out by Takeuti that equality axioms do not generally hold in quantum set theory, it is shown that equality axioms hold for any real numbers in the model. It is also shown that any observational proposition in quantum mechanics can be represented by a corresponding statement for real numbers in the model with the truth value consistent with the standard formulation of quantum mechanics, and that the equality relation between two real numbers in the model is equivalent with the notion of perfect correlation between corresponding observables (self-adjoint operators) in quantum mechanics. The paper is concluded with some remarks on the relevance to quantum set theory of the choice of the implication connective in quantum logic.


1973 ◽  
Vol 28 (9) ◽  
pp. 1516-1530
Author(s):  
E. G. Beltrametti ◽  
G. Cassinelli

We are concerned with the formulation of the essential features of quantum theory in an abstract way, utilizing the mathematical language of proposition lattice theory. We review this approach giving a set of consistent axioms which enables to achieve the relevant results: the formulation and the essential role of the superposition principle is particularly examined.


1972 ◽  
Vol 37 (4) ◽  
pp. 641-645 ◽  
Author(s):  
Barbara Jeffcott

Since 1933, when Kolmogorov laid the foundations for probability and statistics as we know them today [1], it has been recognized that propositions asserting that such and such an event occurred as a consequence of the execution of a particular random experiment tend to band together and form a Boolean algebra. In 1936, Birkhoff and von Neumann [2] suggested that the so-called logic of quantum mechanics should not be a Boolean algebra, but rather should form what is now called a modular ortholattice [3]. Presumably, the departure from Boolean algebras encountered in quantum mechanics can be attributed to the fact that in quantum mechanics, one must consider more than one physical experiment, e.g., an experiment measuring position, an experiment measuring charge, an experiment measuring momentum, etc., and, because of the uncertainty principle, these experiments need not admit a common refinement in terms of which the Kolmogorov theory is directly applicable.Mackey's Axioms I–VI for quantum mechanics [4] imply that the logic of quantum mechanics should be a σ-orthocomplete orthomodular poset [5]. Most contemporary practitioners of quantum logic seem to agree that a quantum logic is (at least) an orthomodular poset [6], [7], [8], [9], [10] or some variation thereof [11]. P. D. Finch [12] has shown that every completely orthomodular poset is the logic arising from sets of Boolean logics, where these sets have a structure similar to the structures generally given to quantum logic. In all of these versions of quantum logic, a fundamental relation, the relation of compatibility or commutativity, plays a decisive role.


2019 ◽  
Vol 1 (1-2) ◽  
pp. 53-63 ◽  
Author(s):  
Yousef Younes ◽  
Ingo Schmitt

AbstractLogic is an algebraic structure that defines a set of abstract rules which govern an area of interest. The abstraction property of the rules makes them reusable tools to model different problems and to reason with them. The proliferation of quantum theory brought attention to quantum logic which is a lattice of projectors and it is of importance to quantum computing. Unfortunately, basic tools like implication are not sufficiently studied in that logic, which prevents us from exploiting the power of quantum mechanics in reasoning. This note investigates the implication issue in quantum logic and defines a quantum implication operator for compatible events as well as for incompatible events. The suggested operator depends both on the angle between the vector sub-spaces of the involved events and the angles between the system state and the vector sub-spaces. It differentiates between three cases depending on the angle between the events’ sub-spaces. The article further shows through an example that some classical reasoning rules such as Modus Ponens and Modus Tollens hold given the suggested implication.


2002 ◽  
Vol 17 (09) ◽  
pp. 1301-1325 ◽  
Author(s):  
D. MAURO

In this paper we study the classical Hilbert space introduced by Koopman and von Neumann in their operatorial formulation of classical mechanics. In particular we show that the states of this Hilbert space do not spread, differently from what happens in quantum mechanics. The role of the phases associated to these classical "wave functions" is analyzed in detail. In this framework we also perform the analog of the two-slit interference experiment and compare it with the quantum case.


2021 ◽  
pp. 2150091
Author(s):  
F. M. Ciaglia ◽  
F. Di Cosmo ◽  
A. Ibort ◽  
G. Marmo ◽  
L. Schiavone ◽  
...  

Using the recently developed groupoidal description of Schwinger’s picture of Quantum Mechanics, a new approach to Dirac’s fundamental question on the role of the Lagrangian in Quantum Mechanics is provided. It is shown that a function [Formula: see text] on the groupoid of configurations (or kinematical groupoid) of a quantum system determines a state on the von Neumann algebra of the histories of the system. This function, which we call q-Lagrangian, can be described in terms of a new function [Formula: see text] on the Lie algebroid of the theory. When the kinematical groupoid is the pair groupoid of a smooth manifold M, the quadratic expansion of [Formula: see text] will reproduce the standard Lagrangians on TM used to describe the classical dynamics of particles.


Sign in / Sign up

Export Citation Format

Share Document