Subsequent and Subsidiary? Rethinking the Role of Applications in Establishing Quantum Mechanics

2015 ◽  
Vol 45 (5) ◽  
pp. 641-702 ◽  
Author(s):  
Jeremiah James ◽  
Christian Joas

As part of an attempt to establish a new understanding of the earliest applications of quantum mechanics and their importance to the overall development of quantum theory, this paper reexamines the role of research on molecular structure in the transition from the so-called old quantum theory to quantum mechanics and in the two years immediately following this shift (1926–1928). We argue on two bases against the common tendency to marginalize the contribution of these researches. First, because these applications addressed issues of longstanding interest to physicists, which they hoped, if not expected, a complete quantum theory to address, and for which they had already developed methods under the old quantum theory that would remain valid under the new mechanics. Second, because generating these applications was one of, if not the, principal means by which physicists clarified the unity, generality, and physical meaning of quantum mechanics, thereby reworking the theory into its now commonly recognized form, as well as developing an understanding of the kinds of predictions it generated and the ways in which these differed from those of the earlier classical mechanics. More broadly, we hope with this article to provide a new viewpoint on the importance of problem solving to scientific research and theory construction, one that might complement recent work on its role in science pedagogy.

Author(s):  
Anthony Duncan ◽  
Michel Janssen

This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.


The steady development of the quantum theory that has taken place during the present century was made possible only by continual reference to the Correspondence Principle of Bohr, according to which, classical theory can give valuable information about quantum phenomena in spite of the essential differences in the fundamental ideas of the two theories. A masterful advance was made by Heisenberg in 1925, who showed how equations of classical physics could be taken over in a formal way and made to apply to quantities of importance in quantum theory, thereby establishing the Correspondence Principle on a quantitative basis and laying the foundations of the new Quantum Mechanics. Heisenberg’s scheme was found to fit wonderfully well with the Hamiltonian theory of classical mechanics and enabled one to apply to quantum theory all the information that classical theory supplies, in so far as this information is consistent with the Hamiltonian form. Thus one was able to build up a satisfactory quantum mechanics for dealing with any dynamical system composed of interacting particles, provided the interaction could be expressed by means of an energy term to be added to the Hamiltonian function. This does not exhaust the sphere of usefulness of the classical theory. Classical electrodynamics, in its accurate (restricted) relativistic form, teaches us that the idea of an interaction energy between particles is only an approxi­mation and should be replaced by the idea of each particle emitting waves which travel outward with a finite velocity and influence the other particles in passing over them. We must find a way of taking over this new information into the quantum theory and must set up a relativistic quantum mechanics, before we can dispense with the Correspondence Principle.


Author(s):  
Eric Scerri

In chapter 7, the influence of the old quantum theory on the periodic system was considered. Although the development of this theory provided a way of reexpressing the periodic table in terms of the number of outer-shell electrons, it did not yield anything essentially new to the understanding of chemistry. Indeed, in several cases, chemists such as Irving Langmuir, J.D. Main Smith, and Charles Bury were able to go further than physicists in assigning electronic configurations, as described in chapter 8, because they were more familiar with the chemical properties of individual elements. Moreover, despite the rhetoric in favor of quantum mechanics that was propagated by Niels Bohr and others, the discovery that hafnium was a transition metal and not a rare earth was not made deductively from the quantum theory. It was essentially a chemical fact that was accommodated in terms of the quantum mechanical understanding of the periodic table. The old quantum theory was quantitatively impotent in the context of the periodic table since it was not possible to even set up the necessary equations to begin to obtain solutions for the atoms with more than one electron. An explanation could be given for the periodic table in terms of numbers of electrons in the outer shells of atoms, but generally only after the fact. But when it came to trying to predict quantitative aspects of atoms, such as the ground-state energy of the helium atom, the old quantum theory was quite hopeless. As one physicist stated, “We should not be surprised . . . even the astronomers have not yet satisfactorily solved the three-body problem in spite of efforts over the centuries.” A succession of the best minds in physics, including Hendrik Kramers, Werner Heisenberg, and Arnold Sommerfeld, made strenuous attempts to calculate the spectrum of helium but to no avail. It was only following the introduction of the Pauli exclusion principle and the development of the new quantum mechanics that Heisenberg succeeded where everyone else had failed.


1973 ◽  
Vol 28 (3-4) ◽  
pp. 538-540 ◽  
Author(s):  
D. J. Simms

AbstractThis is a report on some new relations and analogies between classical mechanics and quantum mechanics which arise out of the work of Kostant and Souriau. Topics treated are i) the role of symmetry groups; ii) the notion of elementary system and the role of Casimir invariants; iii) energy levels; iv) quantisation in terms of geometric data on the classical phase space. Some applications are described.


2021 ◽  
Vol 16 (3) ◽  
pp. 59-67
Author(s):  
Łukasz Mścisławski

The book written by Wojciech Sady is an interesting and inspiring attempt to reconstruct the mechanism of the revolution that took place in physics at the beginning of the 20th century. As part of the attempts to characterize the process of the emergence of special relativity theory and the old quantum theory, author also raises the issue of the role of genius and imagination in the process of searching for new scientific theories. The work is based on rich factual material, however, has several weaknesses and — as it seems — several places that would not require greater precision. This work aims to identify these points.


Author(s):  
Anthony Duncan ◽  
Michel Janssen

We consider three topics which proved frustratingly resistant to the methods of the old quantum theory up to the point of emergence of the quantum mechanics of Heisenberg and collaborators in late 1925. First, the old theory could not account convincingly for the superfluity of stationary states implied by the existence of the complex multiplets seen in most atomic spectra. Second, the progressively more complicated theories proposed for explaining the splittings of lines in the anomalous Zeeman effect were found to lead inevitably to glaring inconsistencies with the assumed mechanical equations of motion. Finally, there was the problem of the dual spectrum of helium, and even more basically, of the ground state energy of helium, all calculations of which in terms of specified electron orbits gave incorrect results. We relate the tangled history of the efforts to provide a theoretical resolution of these problems within the old quantum theory.


Author(s):  
P. A. M. Dirac

In classical mechanics the state of a dynamical system at any particular time can be described by the values of a set of coordinates and their conjugate momenta, thus, if the system has n degrees of freedom, by 2n numbers. In quantum mechanics, on the other hand, we have to describe a state of the system by a wave function involving a set of coordinates, thus by a function of n variables. The quantum description is, therefore, much more complicated than the classical one. Let us consider, however, an ensemble of systems in Gibbs' sense, i.e. not a large number of actual systems which could, perhaps, interact with one another, but a large number of hypothetical systems which are introduced to describe one actual system of which our knowledge is only of a statistical nature. The basis of the quantum treatment of such an ensemble has been given by Neumann. The description obtained by Neumann of an ensemble on the quantum theory is no more complicated than the corresponding classical description. Thus the quantum theory, which appears to such a disadvantage on the score of complication when applied to individual systems, recovers its own when applied to an ensemble. It is the object of the present note to examine this question more closely and to show how complete the analogy is between the quantum and classical treatments of an ensemble.


2010 ◽  
Vol 2010 ◽  
pp. 1-18 ◽  
Author(s):  
U. Klein

It is shown that Schrödinger's equation may be derived from three postulates. The first is a kind of statistical metamorphosis of classical mechanics, a set of two relations which are obtained from the canonical equations of particle mechanics by replacing all observables by statistical averages. The second is a local conservation law of probability with a probability current which takes the form of a gradient. The third is a principle of maximal disorder as realized by the requirement of minimal Fisher information. The rule for calculating expectation values is obtained from a fourth postulate, the requirement of energy conservation in the mean. The fact that all these basic relations of quantum theory may be derived from premises which are statistical in character is interpreted as a strong argument in favor of the statistical interpretation of quantum mechanics. The structures of quantum theory and classical statistical theories are compared, and some fundamental differences are identified.


1973 ◽  
Vol 28 (9) ◽  
pp. 1516-1530
Author(s):  
E. G. Beltrametti ◽  
G. Cassinelli

We are concerned with the formulation of the essential features of quantum theory in an abstract way, utilizing the mathematical language of proposition lattice theory. We review this approach giving a set of consistent axioms which enables to achieve the relevant results: the formulation and the essential role of the superposition principle is particularly examined.


The transition from classical mechanics to quantum mechanics has been formulated in various ways. But all these ways have the common feature that they use as starting point mechanics not in its Newtonian form, but in the form which it was given by Lagrange and Hamilton. The essence of this form consists in the fact that the differential equations are represented as Euler equations of a variational principle for v functions, the generalized coordinates, of one variable, the time. In its purely mathematical aspect the quantization method may, therefore, be regarded as a mode of taking certain notions and certain relations arising from a variational principle for several dependent and one independent variable and of giving them a new meaning.


Sign in / Sign up

Export Citation Format

Share Document