scholarly journals How do bilinguals control their use of languages?

2002 ◽  
Vol 5 (3) ◽  
pp. 214-215 ◽  
Author(s):  
Ardi Roelofs

Dijkstra and Van Heuven sketch the BIA+ model for visual word processing in bilinguals. BIA+ differs in a number of respects from its predecessor, BIA, the leading implemented model of bilingual visual word recognition. Notably, BIA+ contains a new processing component that deals with task demands. BIA+ has not been computationally implemented yet and design decisions still need to be taken. In this commentary, I outline a proposal for modeling the control of tasks in BIA+.

2015 ◽  
Vol 27 (9) ◽  
pp. 1738-1751 ◽  
Author(s):  
Yuanyuan Chen ◽  
Matthew H. Davis ◽  
Friedemann Pulvermüller ◽  
Olaf Hauk

Visual word recognition is often described as automatic, but the functional locus of top–down effects is still a matter of debate. Do task demands modulate how information is retrieved, or only how it is used? We used EEG/MEG recordings to assess whether, when, and how task contexts modify early retrieval of specific psycholinguistic information in occipitotemporal cortex, an area likely to contribute to early stages of visual word processing. Using a parametric approach, we analyzed the spatiotemporal response patterns of occipitotemporal cortex for orthographic, lexical, and semantic variables in three psycholinguistic tasks: silent reading, lexical decision, and semantic decision. Task modulation of word frequency and imageability effects occurred simultaneously in ventral occipitotemporal regions—in the vicinity of the putative visual word form area—around 160 msec, following task effects on orthographic typicality around 100 msec. Frequency and typicality also produced task-independent effects in anterior temporal lobe regions after 200 msec. The early task modulation for several specific psycholinguistic variables indicates that occipitotemporal areas integrate perceptual input with prior knowledge in a task-dependent manner. Still, later task-independent effects in anterior temporal lobes suggest that word recognition eventually leads to retrieval of semantic information irrespective of task demands. We conclude that even a highly overlearned visual task like word recognition should be described as flexible rather than automatic.


Author(s):  
Linda Kerswell ◽  
Paul D. Siakaluk ◽  
Penny M. Pexman ◽  
Christopher R. Sears ◽  
William J. Owen

2018 ◽  
Vol 71 (8) ◽  
pp. 1645-1654 ◽  
Author(s):  
Lauren Heathcote ◽  
Kate Nation ◽  
Anne Castles ◽  
Elisabeth Beyersmann

Much research suggests that words comprising more than one morpheme are decomposed into morphemes in the early stages of visual word recognition. In the present masked primed lexical decision study, we investigated whether or not decomposition occurs for both prefixed and suffixed nonwords and for nonwords which comprise a stem and a non-morphemic ending. Prime–target relatedness was manipulated in three ways: (1) primes shared a semantically transparent morphological relationship with the target (e.g., subcheap-CHEAP, cheapize-CHEAP); (2) primes comprised targets and non-affixal letter strings (e.g., blacheap-CHEAP, cheapstry-CHEAP); and (3) primes were real, complex words unrelated to the target (e.g., miscall-CHEAP, idealism-CHEAP). Both affixed and non-affixed nonwords significantly facilitated the recognition of their stem targets, suggesting that embedded stems are activated independently of whether they are accompanied by a real affix or a non-affix. There was no difference in priming between stems being embedded in initial and final string positions, indicating that embedded stem activation is position-independent. Finally, more priming was observed in the semantically interpretable affixed condition than in the non-affixed condition, which points to a semantic licensing mechanism during complex novel word processing.


2020 ◽  
Author(s):  
Xiaodong Liu ◽  
Luc Vermeylen ◽  
David Wisniewski ◽  
Marc Brysbaert

Lateralization is a critical characteristic of language production and also plays a role in visual word recognition. However, the neural mechanisms underlying the interactions between visual input and spoken word representations are still unclear. We investigated the contribution of sub-lexical phonological information in visual word processing by exploiting the fact that Chinese characters can contain phonetic radicals in either the left or right half of the character. FMRI data were collected while 39 Chinese participants read words in search for target color words. On the basis of whole-brain analysis and three laterality analyses of regions of interest, we argue that visual information from centrally presented Chinese characters is split in the fovea and projected to the contralateral visual cortex, from which phonological information can be extracted rapidly if the character contains a phonetic radical. Extra activation, suggestive of more effortful processing, is observed when the phonetic radical is situated in the left half of the character and therefore initially sent to the visual cortex in the right hemisphere that is less specialized for language processing. Our results are in line with the proposal that phonological information helps written word processing by means of top-down feedback.


2020 ◽  
Vol 82 (5) ◽  
pp. 2739-2750 ◽  
Author(s):  
Paulo Ventura ◽  
Tânia Fernandes ◽  
Alexandre Pereira ◽  
José C. Guerreiro ◽  
António Farinha-Fernandes ◽  
...  

2015 ◽  
Vol 19 (3) ◽  
pp. 578-596 ◽  
Author(s):  
YULIA OGANIAN ◽  
MARKUS CONRAD ◽  
ARASH ARYANI ◽  
HAUKE R. HEEKEREN ◽  
KATHARINA SPALEK

Language-specific orthography (i.e., letters or bigrams that exist in only one language) is known to facilitate language membership recognition. Yet the contribution of continuous sublexical and lexical statistics to language membership decisions during visual word processing is unknown. Here, we used pseudo-words to investigate whether continuous sublexical and lexical statistics bias explicit language decisions (Experiment 1) and language attribution during naming (Experiment 2). We also asked whether continuous statistics would have an effect in the presence of orthographic markers. Language attribution in both experiments was influenced by lexical neighborhood size differences between languages, even in presence of orthographic markers. Sublexical frequencies of occurrence affected reaction times only for unmarked pseudo-words in both experiments, with greater effects in naming. Our results indicate that bilinguals rely on continuous language-specific statistics at sublexical and lexical levels to infer language membership. Implications are discussed with respect to models of bilingual visual word recognition.


Author(s):  
Manuel Perea ◽  
Victoria Panadero

The vast majority of neural and computational models of visual-word recognition assume that lexical access is achieved via the activation of abstract letter identities. Thus, a word’s overall shape should play no role in this process. In the present lexical decision experiment, we compared word-like pseudowords like viotín (same shape as its base word: violín) vs. viocín (different shape) in mature (college-aged skilled readers), immature (normally reading children), and immature/impaired (young readers with developmental dyslexia) word-recognition systems. Results revealed similar response times (and error rates) to consistent-shape and inconsistent-shape pseudowords for both adult skilled readers and normally reading children – this is consistent with current models of visual-word recognition. In contrast, young readers with developmental dyslexia made significantly more errors to viotín-like pseudowords than to viocín-like pseudowords. Thus, unlike normally reading children, young readers with developmental dyslexia are sensitive to a word’s visual cues, presumably because of poor letter representations.


Author(s):  
Diane Pecher ◽  
Inge Boot ◽  
Saskia van Dantzig ◽  
Carol J. Madden ◽  
David E. Huber ◽  
...  

Previous studies (e.g., Pecher, Zeelenberg, & Wagenmakers, 2005) found that semantic classification performance is better for target words with orthographic neighbors that are mostly from the same semantic class (e.g., living) compared to target words with orthographic neighbors that are mostly from the opposite semantic class (e.g., nonliving). In the present study we investigated the contribution of phonology to orthographic neighborhood effects by comparing effects of phonologically congruent orthographic neighbors (book-hook) to phonologically incongruent orthographic neighbors (sand-wand). The prior presentation of a semantically congruent word produced larger effects on subsequent animacy decisions when the previously presented word was a phonologically congruent neighbor than when it was a phonologically incongruent neighbor. In a second experiment, performance differences between target words with versus without semantically congruent orthographic neighbors were larger if the orthographic neighbors were also phonologically congruent. These results support models of visual word recognition that assume an important role for phonology in cascaded access to meaning.


Sign in / Sign up

Export Citation Format

Share Document