Localization of Intracisternal a Particle Antigens in Neoplastic Cells and Preimplantation Mouse Embryos

Author(s):  
Thomas T.F. Huang ◽  
Patricia G. Calarco

The stage specific appearance of a retravirus, termed the Intracisternal A particle (IAP) is a normal feature of early preimplantation development. To date, all feral and laboratory strains of Mus musculus and even Asian species such as Mus cervicolor and Mus pahari express the particles during the 2-8 cell stages. IAP form by budding into the endoplasmic reticulum and appear singly or as groups of donut-shaped particles within the cisternae (fig. 1). IAP are also produced in large numbers in several neoplastic cells such as certain plasmacytomas and rhabdomyosarcomas. The role of IAP, either in normal development or in neoplastic behavior, is unknown.

2009 ◽  
Vol 26 (11-12) ◽  
pp. 597-604 ◽  
Author(s):  
Seyed Noureddin Nematollahi-mahani ◽  
Amirmehdi Nematollahi-mahani ◽  
Ghazaleh Moshkdanian ◽  
Zhinoosossadat Shahidzadehyazdi ◽  
Fatemeh Labibi

Development ◽  
1990 ◽  
Vol 109 (2) ◽  
pp. 323-328 ◽  
Author(s):  
S.V. Evsikov ◽  
L.M. Morozova ◽  
A.P. Solomko

The hypothesis suggesting that the blastocoele is able to form only at a definite nucleocytoplasmic ratio was tested. We compared the development of preimplantation mouse embryos under different conditions. The results demonstrated that the start of cavitation is not dependent on the number of cell divisions. Thus, a definite nucleocytoplasmic ratio is not required for blastocoele formation to start. Our studies on embryos with microsurgically altered cytoplasm content provided evidence for the following biological clock mechanism: a change in the cell program of morphogenesis needs definite concentration of the products of a previous genetic program.


2009 ◽  
Vol 29 (6) ◽  
pp. 1498-1505 ◽  
Author(s):  
Xingxu Huang ◽  
Claudia V. Andreu-Vieyra ◽  
Meizhi Wang ◽  
Austin J. Cooney ◽  
Martin M. Matzuk ◽  
...  

ABSTRACT Separase is a critical protease that catalyzes the cleavage of sister chromatid cohesins to allow the separation of sister chromatids in the anaphase. Its activity must be inhibited prior to the onset of the anaphase. Two inhibitory mechanisms exist in vertebrates that block the protease activity. One mechanism is through binding and inhibition by securin, and another is phosphorylation on Ser1126 (in humans [Ser1121 in mice]). These two mechanisms are largely redundant. However, phosphorylation on Ser1121 is critical for the prevention of premature sister separation in embryonic germ cells. As a result, Ser1121-to-Ala mutation leads to depletion of germ cells in development and subsequently to infertility in mice. Here, we report that the same mutation also causes embryogenesis failure between the 8- and 16-cell stages in mice. Our results indicate a critical role of separase phosphorylation in germ cell development as well as in early embryogenesis. Thus, deregulation of separase may be a significant contributor to infertility in humans.


Author(s):  
D. G. Chase ◽  
W. Winters ◽  
L. Piko

Although the outlines of human adenovirus entry and uncoating in HeLa cells has been clarified in recent electron microscope studies, several details remain unclear or controversial. Furthermore, morphological features of early interactions of human adenovirus with non-permissive mouse cells have not been extensively documented. In the course of studies on the effects of human adenoviruses type 5 (AD-5) and type 12 on cultured preimplantation mouse embryos we have examined virus attachment, entry and uncoating. Here we present the ultrastructural findings for AD-5.AD-5 was grown in HeLa cells and purified by successive velocity gradient and equilibrium density gradient centrifugations in CsCl. After dialysis against PBS, virus was sedimented and resuspended in embryo culture medium. Embryos were placed in culture at the 2-cell stage in Brinster's medium.


Sign in / Sign up

Export Citation Format

Share Document