Rapid Freezing of Freeze-Etch Specimens

Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.

2018 ◽  
Vol 54 (25) ◽  
pp. 3178-3181 ◽  
Author(s):  
Atsushi Inoishi ◽  
Akira Nishio ◽  
Yuto Yoshioka ◽  
Ayuko Kitajou ◽  
Shigeto Okada

We report a battery made from a single material using Li1.5Cr0.5Ti1.5(PO4)3 as the anode, cathode and electrolyte.


2017 ◽  
Vol 4 (22) ◽  
pp. 1700686 ◽  
Author(s):  
Yi Cheng ◽  
Kai Feng ◽  
Huaiqing Wang ◽  
Hongzhang Zhang ◽  
Xianfeng Li ◽  
...  

2017 ◽  
Vol 5 (3) ◽  
pp. 1282-1291 ◽  
Author(s):  
Yang Song ◽  
Shuqiang Jiao ◽  
Jiguo Tu ◽  
Junxiang Wang ◽  
Yingjun Liu ◽  
...  

In this study, we established a rechargeable aluminum ion super battery with high-rate capability using a low temperature inorganic molten salt which is much cheaper, safer and environmentally friendly.


2019 ◽  
Vol 795 ◽  
pp. 3-8
Author(s):  
Hai Tao Wang ◽  
Shi Li Li ◽  
Yan Long Luo ◽  
Jun Qiang Wang ◽  
Hai Bin Zhang ◽  
...  

Based on research of the low temperature fracture property of high grade steel pipe, it shows that X70, X80 steel pipe and X80 tee have high Charpy impact toughness. However, as the wall thickness increases, the shear area of DWTT decreases rapidly, and the thickness effect is significant. The research results show that the original wall thickness impact specimen fracture of steel pipe may not be ductile, for design temperature less than -30°C and wall thickness greater than 40mm. The brittle fracture was caused by structural factors. The Charpy impact energy, which just reflects the toughness of materials, does not show the fracture appearance as it would occur in service, because of the different specimen geometry and high rate of impact. The brittle fracture can occur at low temperature and low stress even with a high Charpy impact energy, the conditions of brittle fracture should be established under combination of the wall thickness, temperature and other factors. In this work, it is clarified that measurement of the fracture toughness under service temperature should be used to control low stress brittle fracture, besides the Charpy impact energy to ensure the material toughness.


Sign in / Sign up

Export Citation Format

Share Document