scholarly journals Structural Analysis of Self-assembled Nanotubes of Bacteriophage T4 Capsid Protein gp23 by Cryo Electron Microscopy and Mass Spectrometry

2006 ◽  
Vol 12 (S02) ◽  
pp. 658-659
Author(s):  
BK Kaletas ◽  
E Van Duijn ◽  
AJ R Heck ◽  
RB J Geels ◽  
F De Haas ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006

2020 ◽  
Vol 21 (9) ◽  
pp. 3119 ◽  
Author(s):  
Jeroen Wagemans ◽  
Jessica Tsonos ◽  
Dominique Holtappels ◽  
Kiandro Fortuna ◽  
Jean-Pierre Hernalsteens ◽  
...  

The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Álvaro Ortega-Esteban ◽  
Carlos P. Mata ◽  
María J. Rodríguez-Espinosa ◽  
Daniel Luque ◽  
Nerea Irigoyen ◽  
...  

ABSTRACT Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an in vitro reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo. IMPORTANCE Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.


Virology ◽  
2007 ◽  
Vol 367 (2) ◽  
pp. 422-427 ◽  
Author(s):  
Andrei Fokine ◽  
Valorie D. Bowman ◽  
Anthony J. Battisti ◽  
Qin Li ◽  
Paul R. Chipman ◽  
...  

2021 ◽  
Author(s):  
Liisa Lutter ◽  
Youssra Al-Hilaly ◽  
Christopher J. Serpell ◽  
Mick F. Tuite ◽  
Claude M. Wischik ◽  
...  

The presence of amyloid fibrils is a hallmark of more than 50 human disorders, including neurodegenerative diseases and systemic amyloidoses. A key unresolved challenge in understanding the involvement of amyloid in disease is to explain the relationship between individual structural polymorphs of amyloid fibrils, in potentially mixed populations, and the specific pathologies with which they are associated. Although cryo-electron microscopy (cryo-EM) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy methods have been successfully employed in recent years to determine the structures of amyloid fibrils with high resolution detail, they rely on ensemble averaging of fibril structures in the entire sample or significant subpopulations. Here, we report a method for structural identification of individual fibril structures imaged by atomic force microscopy (AFM) by integration of high-resolution maps of amyloid fibrils determined by cryo-EM in comparative AFM image analysis. This approach was demonstrated using the hitherto structurally unresolved amyloid fibrils formed in vitro from a fragment of tau (297-391), termed 'dGAE'. Our approach established unequivocally that dGAE amyloid fibrils bear no structural relationship to heparin-induced tau fibrils formed in vitro. Furthermore, our comparative analysis resulted in the prediction that dGAE fibrils are closely related structurally to the paired helical filaments (PHFs) isolated from Alzheimer's disease (AD) brain tissue characterised by cryo-EM. These results show the utility of individual particle structural analysis using AFM, provide a workflow of how cryo-EM data can be incorporated into AFM image analysis and facilitate an integrated structural analysis of amyloid polymorphism.


2021 ◽  
Author(s):  
Raymond N Burton-Smith ◽  
Hemanth K N Reddy ◽  
Martin Svenda ◽  
Chantal Abergel ◽  
Kenta Okamoto ◽  
...  

Members of Marseilleviridae, one family of icosahedral giant viruses classified in 2012 have been identified worldwide in all types of environments. The virion shows a characteristic internal membrane extrusion at the five-fold vertices of the capsid, but its structural details need to be elucidated. We now report the 4.4 Å cryo-electron microscopy structure of the Melbournevirus capsid. An atomic model of the major capsid protein (MCP) shows a unique cup structure on the trimer that accommodates additional proteins. A polyalanine model of the penton base protein shows internally extended N- and C-terminals, which indirectly connect to the internal membrane extrusion. The Marseilleviruses share the same orientational organisation of the MCPs as PBCV-1 and CroV, but do not appear to possess a protein akin to the ″tape measure″ of these viruses. Minor capsid proteins named PC-β, zipper, and scaffold are proposed to control the dimensions of the capsid during assembly.


Microscopy ◽  
2017 ◽  
Vol 66 (suppl_1) ◽  
pp. i39-i39
Author(s):  
Hiroko Takazaki ◽  
Hirofumi Shimizu ◽  
Naoko Kajimura ◽  
Kaoru Mitsuoka ◽  
Takuo Yasunaga

Sign in / Sign up

Export Citation Format

Share Document