High-Resolution Transmission Electron Microscopy Study of Nanostructured Hydroxyapatite

2008 ◽  
Vol 14 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Daniel Biggemann ◽  
Marcelo H. Prado da Silva ◽  
Alexandre M. Rossi ◽  
Antonio J. Ramirez

AbstractCrystalline properties of synthetic nanostructured hydroxyapatite (n-HA) were studied using high-resolution transmission electron microscopy. The focal-series-restoration technique, obtaining exit-plane wavefunction and spherical aberration-corrected images, was successfully applied for the first time in this electron-beam-susceptible material. Multislice simulations and energy dispersive X-ray spectroscopy were also employed to determine unequivocally that n-HA particles of different size preserve stoichiometric HA-like crystal structure. n-HA particles with sizes of twice the HA lattice parameter were found. These results can be used to optimize n-HA sinterization parameters to improve bioactivity.

1995 ◽  
Vol 382 ◽  
Author(s):  
David A. Howell ◽  
Martin A. Crimp ◽  
Lilian M. Hoines ◽  
J. Bass

ABSTRACTHigh-resolution transmission electron microscopy has been used to investigate the structure and growth behavior of three separate multilayer systems composed of spin-glass alloys(AuFe.03,CuMn.15, and AgMn.09) alternating with amorphous silicon. Each of the three systems was fabricated with two different sample configurations. The first consisted of bilayers with 3 nm spinglass alloy and 7 nm amorphous siliconlayers. The second consisted of 7 nm spin-glass alloy and 7 nm amorphous silicon layers. HRTEM images of ion-milled cross-sectioned samples revealed variations in the degree of crystallinity of the spin-glass material. Variations in the amount and symmetry of interlayer formation were also observed. Systematic studies of such variations should help to explain differences in their measured spin-glass properties.


Sign in / Sign up

Export Citation Format

Share Document