Electron-Beam-Induced Carbon Contamination on Silicon: Characterization Using Raman Spectroscopy and Atomic Force Microscopy

2009 ◽  
Vol 16 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Deborah Lau ◽  
Anthony E. Hughes ◽  
Tim H. Muster ◽  
Timothy J. Davis ◽  
A. Matthew Glenn

AbstractElectron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of ∼300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 Å. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


1994 ◽  
Vol 76 (6) ◽  
pp. 3443-3447 ◽  
Author(s):  
J. M. Yáñez‐Limón ◽  
F. Ruiz ◽  
J. González‐Hernández ◽  
C. Vázquez‐López ◽  
E. López‐Cruz

Nano Letters ◽  
2012 ◽  
Vol 12 (8) ◽  
pp. 4110-4116 ◽  
Author(s):  
P. T. Araujo ◽  
N. M. Barbosa Neto ◽  
H. Chacham ◽  
S. S. Carara ◽  
J. S. Soares ◽  
...  

1999 ◽  
Vol 75 (17) ◽  
pp. 2626-2628 ◽  
Author(s):  
A. V. Ankudinov ◽  
A. N. Titkov ◽  
T. V. Shubina ◽  
S. V. Ivanov ◽  
P. S. Kop’ev ◽  
...  

1995 ◽  
Vol 30 (3) ◽  
pp. 678-682 ◽  
Author(s):  
Hee Jeen Kim ◽  
Jae Sung Kim ◽  
Yong Kim ◽  
Moo Sung Kim ◽  
Suk-Ki Min

2019 ◽  
Vol 10 (8) ◽  
pp. 2717-2722
Author(s):  
G. P. Malanych ◽  
O. F. Kolomys ◽  
A. A. Korchovyi ◽  
N. V. Safriuk ◽  
V. M. Tomashyk

Sign in / Sign up

Export Citation Format

Share Document