scholarly journals Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes

Author(s):  
H.R. Moutinho ◽  
R.G. Dhere ◽  
C.-s. Jiang ◽  
T. Gessert ◽  
A. Duda ◽  
...  
2020 ◽  
Vol 10 (10) ◽  
pp. 1903922 ◽  
Author(s):  
Haonan Si ◽  
Suicai Zhang ◽  
Shuangfei Ma ◽  
Zhaozhao Xiong ◽  
Ammarah Kausar ◽  
...  

2017 ◽  
Vol 5 (46) ◽  
pp. 12112-12120 ◽  
Author(s):  
Mingxuan Guo ◽  
Fumin Li ◽  
Lanyu Ling ◽  
Chong Chen

The effect of the incorporated CdS on the local optoelectronic properties of CH3NH3PbI3:CdS bulk heterojunction (BHJ) perovskite solar cells (PSCs) are studied using Kelvin probe force microscopy (KPFM), conductive atomic force microscopy (c-AFM) and electrochemical impedance spectroscopy (EIS).


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3953
Author(s):  
Salvatore Valastro ◽  
Emanuele Smecca ◽  
Salvatore Sanzaro ◽  
Filippo Giannazzo ◽  
Ioannis Deretzis ◽  
...  

Device engineering with proper material integration into perovskite solar cells (PSCs) would extend their durability provided a special care is spent to retain interface integrity during use. In this paper, we propose a method to preserve the perovskite (PSK) surface from solvent-mediated modification and damage that can occur during the deposition of a top contact and furtherly during operation. Our scheme used a hole transporting layer-free top-contact made of Carbon (mostly graphite) to the side of hole extraction. We demonstrated that the PSK/graphite interface benefits from applying a vacuum-curing step after contact deposition that allowed mitigating the loss in efficiency of the solar devices, as well as a full recovery of the electrical performances after device storage in dry nitrogen and dark conditions. The device durability compared to reference devices was tested over 90 days. Conductive atomic force microscopy (CAFM) disclosed an improved surface capability to hole exchange under the graphite contact after vacuum curing treatment.


2017 ◽  
Vol 9 (18) ◽  
pp. 15615-15622 ◽  
Author(s):  
Miki Osaka ◽  
Daisuke Mori ◽  
Hiroaki Benten ◽  
Hiroki Ogawa ◽  
Hideo Ohkita ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1082
Author(s):  
Da-Seul Choi ◽  
Sung-Nam Kwon ◽  
Seok-In Na

PC61BM is commonly used in perovskite solar cells (PSC) as the electron transport material (ETM). However, PC61BM film has various disadvantages, such as its low coverage or the many pinholes that appear due to its aggregation behavior. These faults may lead to undesirable direct contact between the metal cathode and perovskite film, which could result in charge recombination at the perovskite/metal interface. In order to overcome this problem, three alternative non-fullerene electron materials were applied to inverted PSCs; they were evaluated on suitability as electron transport layers. The roles and effects of these non-fullerene ETMs on device performance were studied using photoluminescence (PL) measurements, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), internal resistance in PSC measurements, and conductive atomic force microscopy (C-AFM). It was found that one of the tested materials, IT-4f, showed excellent electron extraction ability and was associated with reduced recombination. The PSC with IT-4f as the ETM produced better cell-performance; it had an average PCE of 11.21%, which makes it better than the ITIC and COi8DFIC-based devices. Finally, IT-4f was compared with PC61BM; it was found that the two materials have quite comparable efficiency and stability levels.


Sign in / Sign up

Export Citation Format

Share Document