scholarly journals High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

2016 ◽  
Vol 22 (1) ◽  
pp. 237-249 ◽  
Author(s):  
Mark W. Tate ◽  
Prafull Purohit ◽  
Darol Chamberlain ◽  
Kayla X. Nguyen ◽  
Robert Hovden ◽  
...  

AbstractWe describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80–200 keV electron beams.

2008 ◽  
Vol 14 (S2) ◽  
pp. 806-807
Author(s):  
P Ercius ◽  
T Caswell ◽  
MW Tate ◽  
A Ercan ◽  
SM Gruner ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2018 ◽  
Vol 24 (6) ◽  
pp. 623-633 ◽  
Author(s):  
Xin Li ◽  
Ondrej Dyck ◽  
Sergei V. Kalinin ◽  
Stephen Jesse

AbstractScanning transmission electron microscopy (STEM) has become the main stay for materials characterization on atomic level, with applications ranging from visualization of localized and extended defects to mapping order parameter fields. In recent years, attention has focused on the potential of STEM to explore beam induced chemical processes and especially manipulating atomic motion, enabling atom-by-atom fabrication. These applications, as well as traditional imaging of beam sensitive materials, necessitate increasing the dynamic range of STEM in imaging and manipulation modes, and increasing the absolute scanning speed which can be achieved by combining sparse sensing methods with nonrectangular scanning trajectories. Here we have developed a general method for real-time reconstruction of sparsely sampled images from high-speed, noninvasive and diverse scanning pathways, including spiral scan and Lissajous scan. This approach is demonstrated on both the synthetic data and experimental STEM data on the beam sensitive material graphene. This work opens the door for comprehensive investigation and optimal design of dose efficient scanning strategies and real-time adaptive inference and control of e-beam induced atomic fabrication.


2012 ◽  
Vol 18 (5) ◽  
pp. 1037-1042 ◽  
Author(s):  
Yun-Wen You ◽  
Hsun-Yun Chang ◽  
Hua-Yang Liao ◽  
Wei-Lun Kao ◽  
Guo-Ji Yen ◽  
...  

AbstractBased on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.


2009 ◽  
Vol 1184 ◽  
Author(s):  
Helge Heinrich ◽  
Biao Yuan ◽  
Haritha Nukala ◽  
Bo Yao

AbstractIn Scanning Transmission Electron Microscopy (STEM) the High-Angle Annular Dark-Field (HAADF) signal increases with atomic number and sample thickness, while dynamic scattering effects and sample orientation have little influence on the contrast. The sensitivity of the HAADF detector for a FEI F30 transmission electron microscope has been calibrated. Additionally, a nearly linear relationship of the HAADF signal with the incident electron current is confirmed. Cross sections of multilayered samples for contrast calibration were obtained by focused ion-beam (FIB) preparation. These cross sections contained several layers with known composition. A database with several pure elements and compounds has been compiled, containing experimental data on the fraction of electrons scattered onto the HAADF detector for each nanometer of sample thickness. Contrast simulations are based on the multi-slice formalism and confirm the differences in HAADF-scattering contrast for the elements and compounds. TEM offers high lateral resolution, but contains little or no information on the thickness of samples. Thickness maps in energy-filtered transmission electron microscopy, convergent-beam electron diffraction and tilt series are so far the only methods to determine thicknesses of particles in a transmission electron microscope. We show that the calibrated HAADF contrast can be used to determine the thicknesses of individual nanoparticles deposited on carbon films. With this information the volumes of nanoparticles with known composition were determined.


Author(s):  
J. M. Cowley

The comparison of scanning transmission electron microscopy (STEM) with conventional transmission electron microscopy (CTEM) can best be made by means of the Reciprocity Theorem of wave optics. In Fig. 1 the intensity measured at a point A’ in the CTEM image due to emission from a point B’ in the electron source is equated to the intensity at a point of the detector, B, due to emission from a point A In the source In the STEM. On this basis it can be demonstrated that contrast effects In the two types of instrument will be similar. The reciprocity relationship can be carried further to include the Instrument design and experimental procedures required to obtain particular types of information. For any. mode of operation providing particular information with one type of microscope, the analagous type of operation giving the same information can be postulated for the other type of microscope. Then the choice between the two types of instrument depends on the practical convenience for obtaining the required Information.


Author(s):  
F. Khoury ◽  
L. H. Bolz

The lateral growth habits and non-planar conformations of polyethylene crystals grown from dilute solutions (<0.1% wt./vol.) are known to vary depending on the crystallization temperature.1-3 With the notable exception of a study by Keith2, most previous studies have been limited to crystals grown at <95°C. The trend in the change of the lateral growth habit of the crystals with increasing crystallization temperature (other factors remaining equal, i.e. polymer mol. wt. and concentration, solvent) is illustrated in Fig.l. The lateral growth faces in the lozenge shaped type of crystal (Fig.la) which is formed at lower temperatures are {110}. Crystals formed at higher temperatures exhibit 'truncated' profiles (Figs. lb,c) and are bound laterally by (110) and (200} growth faces. In addition, the shape of the latter crystals is all the more truncated (Fig.lc), and hence all the more elongated parallel to the b-axis, the higher the crystallization temperature.


Sign in / Sign up

Export Citation Format

Share Document