Electron Tomography of HEK293T Cells Using Scanning Electron Microscope–Based Scanning Transmission Electron Microscopy

2012 ◽  
Vol 18 (5) ◽  
pp. 1037-1042 ◽  
Author(s):  
Yun-Wen You ◽  
Hsun-Yun Chang ◽  
Hua-Yang Liao ◽  
Wei-Lun Kao ◽  
Guo-Ji Yen ◽  
...  

AbstractBased on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.

Author(s):  
William E. Vanderlinde

Abstract Recent developments in transmission electron microscopy (TEM) sample preparation have greatly reduced the time and cost for preparing thin samples. In this paper, a method is demonstrated for viewing thin samples in transmission in an unmodified scanning electron microscope (SEM) using an easily constructed sample holder. Although not a substitute for true TEM analysis, this method allows for spatial resolution that is superior to typical SEM imaging and provides image contrast from material structure that is typical of TEM images. Furthermore, the method can produce extremely high resolution x-ray maps that are typically produced only by scanning transmission electron microscope (STEM) systems.


2016 ◽  
Vol 22 (4) ◽  
pp. 754-767 ◽  
Author(s):  
Kayla X. Nguyen ◽  
Megan E. Holtz ◽  
Justin Richmond-Decker ◽  
David A. Muller

AbstractA long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.


1995 ◽  
Vol 68 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Paul E. F. Cudby ◽  
Barry A. Gilbey

Abstract A novel method for carrying out scanning transmission electron microscopy on a standard scanning electron microscope is described. This method involves the addition of a specially fabricated mount and is accomplished without carrying out any form of modification on the microscope. The method is compared to more conventional microscopy techniques and examples are given showing the advantages of this system.


Parasitology ◽  
1970 ◽  
Vol 61 (2) ◽  
pp. 219-227 ◽  
Author(s):  
H. D. Chapman ◽  
R. A. Wilson

The distribution of the integumentary papillae of the cercaria ofHimasthla secundahas been studied by a variety of techniques. Structures stained by silver nitrate and visible under the light microscope correspond in their spatial distribution with papillae observed under the scanning electron microscope. The tegumentary papillae described with the light and scanning electron microscope are correlated with the specialized nerve endings in the tegument as seen in transmission electron microscopy. The ultrastructure of these papillae is examined by conventional transmission electron microscopy and the probability that these structures are sensory is discussed.


1984 ◽  
Vol 62 (10) ◽  
pp. 2081-2093 ◽  
Author(s):  
Rosmarie Honegger

The conidiomata, conidiophores, and conidia of six lichen-forming Ascomycetes were investigated using the scanning electron microscope, and conidium development in two of these species was studied by transmission electron microscopy. Phialidic (micro) conidium formation was observed in the mycobiont of Parmelia tiliacea, Physconia pulverulacea, and Cladonia furcata (Lecanorales), in Lobaria laetevirens (Peltigerales), and in Caloplaca aurantia (Teloschistales). Annellations, first described by Vobis on the basis of light and transmission electron microscope investigations, were also found in scanning electron microscope preparations of macroconidia bearing conidiogenous cells of Lecanactis abietina (Opegraphales). Ultrastructural and developmental studies on conidiophore structure and conidium formation may be of interest for taxonomic and evolutionary considerations in lichen-forming fungi.


Sign in / Sign up

Export Citation Format

Share Document