scholarly journals The Nanoscale Basis of Atrial Fibrillation: Functional Impact of Disrupting NaV1.5-rich Intercalated Disk Nanodomains.

2020 ◽  
Vol 26 (S2) ◽  
pp. 832-832 ◽  
Author(s):  
Heather Struckman ◽  
Amara Greer-Short ◽  
Stephen Baine ◽  
Louisa Mezache ◽  
Anna Phillips ◽  
...  

Background:Atrial fibrillation (AF), which is characterized by chaotic patterns of electrical activation of the atria, affects over 4 million people in the US alone. We previously identified nanoscale structural abnormalities in the hearts of AF patients. Specifically, they displayed swelling of gap junction (GJ) –adjacent perinexi, specialized nanodomains rich in cardiac sodium channels (NaV1.5) and located within intercalated disks (IDs; sites of electromechanical contact between adjacent cells). However, the functional consequences of these nanoscale structural changes remain unclear.Objective:We assessed the structural and functional impacts of selectively disrupting different NaV1.5-rich ID nanodomains.Methods and Results:We utilized peptide mimetics of adhesion domains to selectively inhibit adhesion within different ID nanodomains: 1) Nadp1 (target: N-cadherin), 2) dadp1 (target: Desmoglein-2), and 3) βadp1 (target: sodium channel β1 subunit [SCN1b]). Each active peptide was compared against a corresponding inactive control peptide (Nadp1-c, dadp1-c, βadp1-scr). Sub-diffraction confocal imaging revealed ID enrichment of active peptides, but not inactive controls. Furthermore, each active peptide was preferentially localized in ID regions rich in its corresponding protein target. Peptide treatment (100 μM; 60 minutes) of ex vivo mouse hearts revealed profound widening of perinexi by βadp1 and of mechanical junctions by Nadp1. Dadp1 also induced widening of mechanical junctions albeit to a lower degree. STORM single molecule localization microscopy identified about 50&per; of ID-localized NaV1.5 within GJ-adjacent perinexi, while an additional ∼35&per; was located within N-cad-rich ID sites. Nadp1 and βadp1 induced redistribution of ID localized NaV1.5 away from perinexi and mechanical junctions respectively. Dadp1, again, had similar but milder effects compared to Nadp1. Western blot revealed the expression levels of NaV1.5, connexin 43 (Cx43), connexin 40 (Cx40), β1 in peptide treated hearts to be within 10&per; of levels in untreated controls. Optical mapping revealed atrial conduction slowing in hearts treated with Nadp1 (17cm/s, 70.83&per; of control) and βadp1 (13 cm/s, 54.17&per; of control), but not inactive control peptides (24 cm/s). Volume-conducted electrocardiograms (ECG) revealed P wave prolongation in active peptide treated hearts (Nadp1: 26.5ms, βadp1: 31ms), consistent with conduction slowing compared to the inactive control peptides (16ms). Importantly, burst pacing elicited atrial arrhythmias in all hearts treated with Nadp1 and βadp1. Arrhythmia burden (duration, number of arrhythmias) was highest with βadp1.Conclusions:These results suggest that disruption of NaV1.5-rich ID nanodomains impairs electrical impulse propagation and promotes arrhythmias in the atria. Furthermore, the magnitude of functional impacts are likely determined by the amount of sodium channels contained within the nanodomains disrupted.

2020 ◽  
Vol 31 (10) ◽  
pp. 2312-2325
Author(s):  
Wei Cao ◽  
Liling Wu ◽  
Xiaodong Zhang ◽  
Jing Zhou ◽  
Jian Wang ◽  
...  

BackgroundHypertension commonly complicates CKD. Vascular smooth muscle cells (VSMCs) of resistance arteries receive signals from the sympathetic nervous system that induce an endothelial cell (EC)–dependent anticontractile response that moderates vasoconstriction. However, the specific role of this pathway in the enhanced vasoconstriction in CKD is unknown.MethodsA mouse model of CKD hypertension generated with 5/6-nephrectomy (5/6Nx) was used to investigate the hypothesis that an impaired anticontractile mechanism enhances sympathetic vasoconstriction. In vivo, ex vivo (isolated mesenteric resistance arteries), and in vitro (VSMC and EC coculture) models demonstrated neurovascular transmission and its contribution to vascular resistance.ResultsBy 4 weeks, 5/6Nx mice (versus sham) had augmented increases in mesenteric vascular resistance and mean arterial pressure with carotid artery occlusion, accompanied by decreased connexin 43 (Cx43) expression at myoendothelial junctions (MEJs), impaired gap junction function, decreased EC-dependent hyperpolarization (EDH), and enhanced contractions. Exposure of VSMCs to NE for 24 hours in a vascular cell coculture decreased MEJ Cx43 expression and MEJ gap junction function. These changes preceded vascular structural changes evident only at week 8. Inhibition of central sympathetic outflow or transfection of Cx43 normalized neurovascular transmission and vasoconstriction in 5/6Nx mice.Conclusions5/6Nx mice have enhanced neurovascular transmission and vasoconstriction from an impaired EDH anticontractile component before vascular structural changes. These neurovascular changes depend on an enhanced sympathetic discharge that impairs the expression of Cx43 in gap junctions at MEJs, thereby interrupting EDH responses that normally moderate vascular tone. Dysregulation of neurovascular transmission may contribute to the development of hypertension in CKD.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Qingping Yao ◽  
Danika M. Hayman ◽  
Qiuxia Dai ◽  
Merry L. Lindsey ◽  
Hai-Chao Han

The effect of pulse pressure on arterial wall remodeling has not been clearly defined. The objective of this study was to evaluate matrix remodeling in arteries under nonpulsatile and hyperpulsatile pressure as compared with arteries under normal pulsatile pressure. Porcine carotid arteries were cultured for 3 and 7 days under normal, nonpulsatile, and hyperpulsatile pressures with the same mean pressure and flow rate using an ex vivo organ culture model. Fenestrae in the internal elastic lamina, collagen, fibronectin, and gap junction protein connexin 43 were examined in these arteries using confocal microscopy, immunoblotting, and immunohistochemistry. Our results showed that after 7 days, the mean fenestrae size and the area fraction of fenestrae decreased significantly in nonpulsatile arteries (51% and 45%, respectively) and hyperpulsatile arteries (45% and 54%, respectively) when compared with normal pulsatile arteries. Fibronectin decreased (29.9%) in nonpulsatile arteries after 3 days but showed no change after 7 days, while collagen I levels increased significantly (106%) in hyperpulsatile arteries after 7 days. The expression of connexin 43 increased by 35.3% in hyperpulsatile arteries after 7 days but showed no difference in nonpulsatile arteries. In conclusion, our results demonstrated, for the first time, that an increase or a decrease in pulse pressure from its normal physiologic level stimulates structural changes in the arterial wall matrix. However, hyperpulsatile pressure has a more pronounced effect than the diminished pulse pressure. This effect helps to explain the correlation between increasing wall stiffness and increasing pulse pressure in vivo.


2021 ◽  
Author(s):  
Adel K Hussein ◽  
Mohammed H Bhuiyan ◽  
Jianqin Zhuang ◽  
Sébastien F Poget

Voltage-gated sodium channels are membrane proteins that play an important role in the propagation of electrical signals by mediating the rising phase of an action potential. Numerous diseases, including epilepsy, extreme pain, and certain cardiac arrhythmias have been linked to defects in these channels. The S3b-S4a helix-turn-helix motif (paddle motif) is a region of the channel that is involved in voltage sensing and undergoes significant structural changes during gating. It is also the binding site for many gating-modifier toxins. We determined the solution structure of the paddle motif from the fourth repeat of NaV1.5 in dodecylphosphocholine micelles by NMR spectroscopy and investigated its dynamics and micelle interactions. The structure displays a helix hairpin with a short connecting loop, and likely represents the activated conformation with three of the first four gating charges facing away from S3. Furthermore, paramagnetic relaxation measurements showed that the paddle motif is mainly interacting with the interface region of the micelle. NMR relaxation studies revealed that the paddle motif is mostly rigid, with some residues around the loop region and the last 4 residues on the C-terminus displaying heightened mobility. The structural findings reported here allowed the interpretation of three disease-causing mutations in this region of the human cardiac sodium channel, S1609W, F1617del and T1620M. The establishment of this model system for NMR studies of the paddle region offers a promising platform for future toxin interaction studies in the cardiac sodium channels, and similar approaches may be applied to other sodium channel isoforms.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 532
Author(s):  
Fuyu Kobirumaki-Shimozawa ◽  
Tomohiro Nakanishi ◽  
Togo Shimozawa ◽  
Takako Terui ◽  
Kotaro Oyama ◽  
...  

Myocardial contraction is initiated by action potential propagation through the conduction system of the heart. It has been thought that connexin 43 in the gap junctions (GJ) within the intercalated disc (ID) provides direct electric connectivity between cardiomyocytes (electronic conduction). However, recent studies challenge this view by providing evidence that the mechanosensitive cardiac sodium channels Nav1.5 localized in perinexii at the GJ edge play an important role in spreading action potentials between neighboring cells (ephaptic conduction). In the present study, we performed real-time confocal imaging of the CellMask-stained ID in the living mouse heart in vivo. We found that the ID structure was not rigid. Instead, we observed marked flexing of the ID during propagation of contraction from cell to cell. The variation in ID length was between ~30 and ~42 μm (i.e., magnitude of change, ~30%). In contrast, tracking of α-actinin-AcGFP revealed a comparatively small change in the lateral dimension of the transitional junction near the ID (i.e., magnitude of change, ~20%). The present findings suggest that, when the heart is at work, mechanostress across the perinexii may activate Nav1.5 by promoting ephaptic conduction in coordination with electronic conduction, and, thereby, efficiently transmitting excitation-contraction coupling between cardiomyocytes.


2016 ◽  
Vol 59 (2) ◽  
pp. 43-49 ◽  
Author(s):  
Adéla Matějková ◽  
Ivo Šteiner

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. For long time it was considered as pure functional disorder, but in recent years, there were identified atrial locations, which are involved in the initiation and maintenance of this arrhythmia. These structural changes, so called remodelation, start at electric level and later they affect contractility and morphology. In this study we attempted to find a possible relation between morphological (scarring, amyloidosis, left atrial (LA) enlargement) and electrophysiological (ECG features) changes in patients with AF. We examined grossly and histologically 100 hearts of necropsy patients – 54 with a history of AF and 46 without AF. Premortem ECGs were evaluated. The patients with AF had significantly heavier heart, larger LA, more severely scarred myocardium of the LA and atrial septum, and more severe amyloidosis in both atria. Severity of amyloidosis was higher in LAs vs. right atria (RAs). Distribution of both fibrosis and amyloidosis was irregular. The most affected area was in the LA anterior wall. Patients with a history of AF and with most severe amyloidosis have more often abnormally long P waves. Finding of long P wave may contribute to diagnosis of a hitherto undisclosed atrial fibrillation.


2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
S. Dhein ◽  
S. Rothe ◽  
A. Busch ◽  
H. Bittner ◽  
M. Kostelka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document