scholarly journals Sympathetic Overactivity in CKD Disrupts Buffering of Neurotransmission by Endothelium-Derived Hyperpolarizing Factor and Enhances Vasoconstriction

2020 ◽  
Vol 31 (10) ◽  
pp. 2312-2325
Author(s):  
Wei Cao ◽  
Liling Wu ◽  
Xiaodong Zhang ◽  
Jing Zhou ◽  
Jian Wang ◽  
...  

BackgroundHypertension commonly complicates CKD. Vascular smooth muscle cells (VSMCs) of resistance arteries receive signals from the sympathetic nervous system that induce an endothelial cell (EC)–dependent anticontractile response that moderates vasoconstriction. However, the specific role of this pathway in the enhanced vasoconstriction in CKD is unknown.MethodsA mouse model of CKD hypertension generated with 5/6-nephrectomy (5/6Nx) was used to investigate the hypothesis that an impaired anticontractile mechanism enhances sympathetic vasoconstriction. In vivo, ex vivo (isolated mesenteric resistance arteries), and in vitro (VSMC and EC coculture) models demonstrated neurovascular transmission and its contribution to vascular resistance.ResultsBy 4 weeks, 5/6Nx mice (versus sham) had augmented increases in mesenteric vascular resistance and mean arterial pressure with carotid artery occlusion, accompanied by decreased connexin 43 (Cx43) expression at myoendothelial junctions (MEJs), impaired gap junction function, decreased EC-dependent hyperpolarization (EDH), and enhanced contractions. Exposure of VSMCs to NE for 24 hours in a vascular cell coculture decreased MEJ Cx43 expression and MEJ gap junction function. These changes preceded vascular structural changes evident only at week 8. Inhibition of central sympathetic outflow or transfection of Cx43 normalized neurovascular transmission and vasoconstriction in 5/6Nx mice.Conclusions5/6Nx mice have enhanced neurovascular transmission and vasoconstriction from an impaired EDH anticontractile component before vascular structural changes. These neurovascular changes depend on an enhanced sympathetic discharge that impairs the expression of Cx43 in gap junctions at MEJs, thereby interrupting EDH responses that normally moderate vascular tone. Dysregulation of neurovascular transmission may contribute to the development of hypertension in CKD.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Hailong Yu ◽  
Xiang Cao ◽  
Wei Li ◽  
Pinyi Liu ◽  
Yuanyuan Zhao ◽  
...  

Abstract Background In the central nervous system (CNS), connexin 43 (Cx43) is mainly expressed in astrocytes and regulates astrocytic network homeostasis. Similar to Cx43 overexpression, abnormal excessive opening of Cx43 hemichannels (Cx43Hcs) on reactive astrocytes aggravates the inflammatory response and cell death in CNS pathologies. However, the role of excessive Cx43Hc opening in intracerebral hemorrhage (ICH) injury is not clear. Methods Hemin stimulation in primary cells and collagenase IV injection in C57BL/6J (B6) mice were used as ICH models in vitro and in vivo. After ICH injury, the Cx43 mimetic peptide Gap19 was used for treatment. Ethidium bromide (EtBr) uptake assays were used to measure the opening of Cx43Hcs. Western blotting and immunofluorescence were used to measure protein expression. qRT-PCR and ELISA were used to determine the levels of cytokines. Coimmunoprecipitation (Co-IP) and the Duolink in situ proximity ligation assay (PLA) were applied to measure the association between proteins. Results In this study, Cx43 expression upregulation and excessive Cx43Hc opening was observed in mice after ICH injury. Delayed treatment with Gap19 significantly alleviated hematoma volume and neurological deficits after ICH injury. In addition, Gap19 decreased inflammatory cytokine levels in the tissue surrounding the hematoma and decreased reactive astrogliosis after ICH injury in vitro and in vivo. Intriguingly, Cx43 transcriptional activity and expression in astrocytes were significantly increased after hemin stimulation in culture. However, Gap19 treatment downregulated astrocytic Cx43 expression through the ubiquitin-proteasome pathway without affecting Cx43 transcription. Additionally, our data showed that Gap19 increased Yes-associated protein (YAP) nuclear translocation. This subsequently upregulated SOCS1 and SOCS3 expression and then inhibited the TLR4-NFκB and JAK2-STAT3 pathways in hemin-stimulated astrocytes. Finally, the YAP inhibitor, verteporfin (VP), reversed the anti-inflammatory effect of Gap19 in vitro and almost completely blocked its protective effects in vivo after ICH injury. Conclusions This study provides new insight into potential treatment strategies for ICH injury involving astroglial Cx43 and Cx43Hcs. Suppression of abnormal astroglial Cx43 expression and Cx43Hc opening by Gap19 has anti-inflammatory and neuroprotective effects after ICH injury.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Slava Rom ◽  
Nathan A. Heldt ◽  
Sachin Gajghate ◽  
Alecia Seliga ◽  
Nancy L. Reichenbach ◽  
...  

Abstract Cognitive impairment is a well-known complication of diabetes mellitus (DM). Microvascular compromise was described one DM complication. Recently we showed blood brain barrier (BBB) permeability and memory loss are associated with diminution of tight junctions (TJ) in brain endothelium and pericyte coverage and inflammation in cerebral microvessels and brain tissue paralleling hyperglycemia in mice of both DM types. The current study demonstrates that exposure of brain microvessels to hyperglycemic conditions or advanced glycation end products (AGEs) ex vivo resulted in significant abnormalities in membranous distribution of TJ proteins. We found significant increase in the amount of extracellular vesicles (EVs) isolated from DM mice and enhanced presence of TJ proteins, occludin and claudin-5, on EVs. Exposure of BMVECs to high glucose and AGEs led to significant augmentation of ICAM and VCAM expression, elevated leukocyte adhesion to and migration across BMVEC monolayers, and increased BBB permeability in vitro. Pericytes exposed to hyperglycemia and AGEs displayed diminished expression of integrin α1, PDGF-R1β and connexin-43. Our findings indicate BBB compromise in DM ex vivo, in vitro and in vivo models in association with BMVEC/pericyte dysfunction and inflammation. Prevention of BBB injury may be a new therapeutic approach to avert cognitive demise in DM.


1990 ◽  
Vol 110 (3) ◽  
pp. 597-605 ◽  
Author(s):  
R L Gimlich ◽  
N M Kumar ◽  
N B Gilula

Xenopus mRNAs that potentially encode gap junction proteins in the oocyte and early embryo have been identified by low-stringency screening of cDNA libraries with cloned mammalian gap junction cDNAs. The levels of these mRNAs show strikingly different temporal regulation and tissue distribution. Using a nomenclature designed to stress important structural similarities of distinct gap junction gene products, the deduced polypeptides have been designated the Xenopus alpha 1 and alpha 2 gap junction proteins. The alpha 2 gap junction mRNA is a maternal transcript that disappears by the late gastrula stage. It is not detected in any organ of the adult except the ovary, and resides primarily, if not exclusively, in the oocytes and early embryos. The alpha 1 gap junction mRNA appears during organogenesis, and is detected in RNA from a wide variety of organs. It is also found in full-grown oocytes, but is rapidly degraded upon oocyte maturation, both in vivo and in vitro. The alpha 1 and alpha 2 mRNAs encode proteins with different degrees of amino acid sequence similarity to the predominant gap junction subunit of the mammalian heart (connexin 43). Together with our earlier report of a mid-embryonic (beta 1) gap junction mRNA, the results suggest that intercellular communication during oocyte growth and postfertilization development is a complex phenomenon involving the coordinated regulation of several genes.


Author(s):  
Tingting Zhang ◽  
Yanyan Wang ◽  
Qin Xia ◽  
Zhiyi Tu ◽  
Jiajun Sun ◽  
...  

Cerebral ischemia/reperfusion (I/R) injury is a serious condition that leads to increased apoptosis of microglial and neurons in the brain. In this study, we identified that Cx43 expression level is significantly increased in the microglial cells during I/R injury. Using an in vitro model (hypoxia/reoxygenation-H/R injury), we observed that H/R injury leads to an increase in activation of microglial cells and increase in levels of pro-inflammatory markers such as IL-1β, IL-6, and TNF-α. Additionally, we could also observe significant increase in phosphorylation of Cx43 and Cav3.2 levels. To assess the role of H/R injured microglial cells on neuronal population, we cultured the neurons with conditioned media (MCS) from H/R injured microglial cells. Interestingly, we observed that microglial H/R injury significantly decreased Map2 expression and affected neuronal morphology. Further, we aimed to assess the effects of propofol on cerebral H/R injury, and observed that 40 μM propofol significantly decreased Cx43, Cx43 phosphorylation, and CaV3.2 levels. Additionally, propofol decreased apoptosis and increased Map2 expression levels in H/R injured neurons. Using silencing experiments, we confirmed that siCx43 could significantly improve the propofol’s rescue after H/R injury in both microglia and neurons. We further developed an in vivo MCAO (middle cerebral artery occlusion) rat model to understand the effect of propofol in I/R injury. Interestingly, propofol treatment and downregulation of Cx43 significantly decreased the infract volume and apoptosis in these MCAO rats. Thus, this study clearly establishes that propofol protects the brain against I/R injury through the downregulation of Cx43 in microglial cells.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Le Yang ◽  
Jian Yan ◽  
Jin-An Zhang ◽  
Xin-Hui Zhou ◽  
Chao Fang ◽  
...  

Abstract Background Gap junctions are involved in the development of cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). However, the specific roles and regulatory functions of related connexin isoforms remain unknown. The aim of this study was to investigate the importance of connexin 43 (Cx43) in CVS and determine whether Cx43 alterations are modulated via the protein kinase C (PKC) signaling transduction pathway. Methods Oxyhemoglobin (OxyHb)-induced smooth muscle cells of basilar arterial and second-injection model in rat were used as CVS models in vitro and in vivo. In addition, dye transfer assays were used for gap junction-mediated intercellular communication (GJIC) observation in vitro and delayed cerebral ischemia (DCI) was observed in vivo by perfusion-weighted imaging (PWI) and intravital fluorescence microscopy. Results Increase in Cx43 mediated the development of SAH-induced CVS was found in both in vitro and in vivo CVS models. Enhanced GJIC was observed in vitro CVS model, this effect and increased Cx43 were reversed by preincubation with specific PKC inhibitors (chelerythrine or GF 109203X). DCI was observed in vivo on day 7 after SAH. However, DCI was attenuated by pretreatment with Cx43 siRNA or PKC inhibitors, and the increased Cx43 expression in vivo was also reversed by Cx43 siRNA or PKC inhibitors. Conclusions These data provide strong evidence that Cx43 plays an important role in CVS and indicate that changes in Cx43 expression may be mediated by the PKC pathway. The current findings suggest that Cx43 and the PKC pathway are novel targets for developing treatments for SAH-induced CVS.


Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200254
Author(s):  
Michael J. O'Sullivan ◽  
Thien-Khoi N. Phung ◽  
Jin-Ah Park

In asthma, progressive structural changes of the airway wall are collectively termed airway remodelling. Despite its deleterious effect on lung function, airway remodelling is incompletely understood. As one of the important causes leading to airway remodelling, here we discuss the significance of mechanical forces that are produced in the narrowed airway during asthma exacerbation, as a driving force of airway remodelling. We cover in vitro , ex vivo and in vivo work in this field, and discuss up-to-date literature supporting the idea that bronchoconstriction may be the missing link in a comprehensive understanding of airway remodelling in asthma.


2019 ◽  
Vol 6 (4) ◽  
pp. 101 ◽  
Author(s):  
Savannah Luu ◽  
Cynthia Bell ◽  
Sarah Schneider ◽  
Thu Annelise Nguyen

Incidence of canine mammary carcinoma is two times higher than the rate of human breast cancer. Mammary tumors are the most common type of cancer in intact female dogs and account for about half of all neoplasms in these dogs. Well-established models of breast cancer have shown that neoplastic cells often have a loss of intercellular communication, particularly gap junction proteins. Thus, the objective of this study is to explore the aspect of gap junction intercellular communication in canine mammary carcinoma, non-cancerous (CMEC) and cancerous (CMT12, CMT27, and CF41.Mg) cells, and patient-derived tumors. Both non-cancerous and cancerous mammary cells express connexins 26 and 43 using immunofluorescence; however, the level of expression is significantly different in quantitative analysis using western blot in which connexin 43 in both CMT12 and CMT27 is significantly decreased compared to CMEC. Furthermore, a decrease of gap junction capacity in CMT12 and CMT27 was observed compared to CMEC. Immunostaining of CMT27-xenograft tumors revealed positive Cx26 and negative Cx43 expression. Similarly, immunostaining of spontaneous canine mammary tumors revealed that Cx26 is present in all tumors while Cx43 is present in 25% of tumors. Overall, the study provides for the first time that a differential pattern of connexin expression exists between non-cancerous and cancerous mammary cells in dogs. This study will pave the path for further in vitro work of connexins in comparative canine models and possibly allow for novel therapeutics to be developed.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 802
Author(s):  
Shamil Akhmedov ◽  
Sergey Afanasyev ◽  
Marina Trusova ◽  
Pavel Postnikov ◽  
Yulia Rogovskaya ◽  
...  

Atherosclerosis, a systematic degenerative disease related to the buildup of plaques in human vessels, remains the major cause of morbidity in the field of cardiovascular health problems, which are the number one cause of death globally. Novel atheroprotective HDL-mimicking chemically modified carbon-coated iron nanoparticles (Fe@C NPs) were produced by gas-phase synthesis and modified with organic functional groups of a lipophilic nature. Modified and non-modified Fe@C NPs, immobilized with polycaprolactone on stainless steel, showed high cytocompatibility in human endothelial cell culture. Furthermore, after ex vivo treatment of native atherosclerotic plaques obtained during open carotid endarterectomy surgery, Fe@C NPs penetrated the inner structures and caused structural changes of atherosclerotic plaques, depending on the period of implantation in Wistar rats, serving as a natural bioreactor. The high biocompatibility of the Fe@C NPs shows great potential in the treatment of atherosclerosis disease as an active substance of stent coatings to prevent restenosis and the formation of atherosclerotic plaques.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cai Qing ◽  
Zhao Xinyi ◽  
Yu Xuefei ◽  
Xue Xindong ◽  
Fu Jianhua

Bronchopulmonary dysplasia (BPD) is a common devastating pulmonary complication in preterm infants. Alveolar maldevelopment is the crucial pathological change of BPD highly associated with oxidative stress–mediated excessive apoptosis. Cellular injury can be propagated and amplified by gap junction (GJ)–mediated intercellular communication. Connexin 43 (Cx43) is the most ubiquitous and critical GJ protein. Gap26 is a specific Cx43 mimic peptide, playing as a Cx43-GJ inhibitor. We hypothesized that Cx43-GJ was involved in alveolar maldevelopment of BPD via amplifying oxidative stress signaling and inducing excessive apoptosis. Neonatal Sprague Dawley rats were kept in either normoxia (21% O2) or hyperoxia (85% O2) continuously from postnatal day (PN) 1 to 14 in the presence or absence of Gap26. Moreover, RLE-6TN cells (type II alveolar epithelial cells of rats) were cultured in vitro under normoxia (21% O2) or hyperoxia (85% O2). RLE-6TN cells were treated by N-acetyl cysteine (NAC) (a kind of reactive oxygen species (ROS) scavenger) or Gap26. Morphological properties of lung tissue are detected. Markers associated with Cx43 expression, ROS production, the activity of the ASK1-JNK/p38 signaling pathway, and apoptotic level are detected in vivo and in vitro, respectively. In vitro, the ability of GJ-mediated intercellular communication was examined by dye-coupling assay. In vitro, our results demonstrated ROS increased Cx43 expression and GJ-mediated intercellular communication and Gap26 treatment decreased ROS production, inhibited ASK1-JNK/p38 signaling, and decreased apoptosis. In vivo, we found that hyperoxia exposure resulted in increased ROS production and Cx43 expression, activated ASK1-JNK/p38 signaling, and induced excessive apoptosis. However, Gap26 treatment reversed these changes, thus improving alveolar development in neonatal rats with hyperoxia exposure. In summary, oxidative stress increased Cx43 expression and Cx43-GJ–mediated intercellular communication. And Cx43-GJ–mediated intercellular communication amplified oxidative stress signaling, inducing excessive apoptosis via the ASK1-JNK/p38 signaling pathway. The specific connexin 43–inhibiting peptide Gap26 was a novel therapeutic strategy to improve the alveolar development of BPD.


2015 ◽  
Vol 309 (9) ◽  
pp. C600-C607 ◽  
Author(s):  
Cheng-Hung Chen ◽  
Jamie N. Mayo ◽  
Robert G. Gourdie ◽  
Scott R. Johnstone ◽  
Brant E. Isakson ◽  
...  

Endothelial cell migration is a fundamental process during angiogenesis and, therefore, a point of intervention for therapeutic strategies aimed at controlling pathologies involving blood vessel growth. We sought to determine the role of the gap junction protein connexin 43 (Cx43) in key features of angiogenesis in the central nervous system. We used an in vitro model to test the hypothesis that a complex of interacting proteins, including Cx43 and zonula occludens-1 (ZO-1), regulates the migratory behavior of cerebral endothelium. With knockdown and overexpression experiments, we demonstrate that the rate of healing following scrape-wounding of endothelium is regulated by the level of Cx43 protein expression. The effects on cell motility and proliferation were independent of gap junction communication as cells were sensitive to altered Cx43 expression in single plated cells. Coupling of Cx43/ZO-1 critically regulates this process as demonstrated with the use of a Cx43 α-carboxy terminus 1 peptide mimetic (αCT1) and overexpression of a mutant ZO-1 with the Cx43-binding PDZ2 domain deleted. Disrupting the Cx43/ZO-1 complex with these treatments resulted in collapse of the organized F-actin cytoskeleton and the appearance of actin nodes. Preincubation with the myosin 2 inhibitors blebbistatin or Y-27632 disrupted the Cx43/ZO-1 complex and inhibited cell spreading at the leading edge of migration. Cells studied individually in time-lapse open field locomotion assays wandered less when Cx43/ZO-1 interaction was disrupted without significant change in speed, suggesting that faster wound healing is a product of linearized migration. In contrast to the breakdown of F-actin architecture, microtubule architecture was not obviously affected by treatments. This study provides new insight into the fundamental regulatory mechanisms of cerebral endothelial cell locomotion. Cx43 tethers the F-actin cytoskeleton through a ZO-1 linker and supports cell spreading and exploration during locomotion. Here, we demonstrate that releasing this actin-coupled tether shifts the balance of directional migration control to a more linear movement that enhances the rate of wound healing.


Sign in / Sign up

Export Citation Format

Share Document