scholarly journals Strain measurements in industrial applications: A case study of solder bumps in semiconductor devices

2021 ◽  
Vol 27 (S1) ◽  
pp. 788-790
Author(s):  
Pawel Nowakowski ◽  
Mary Ray ◽  
Paul Fischione
Author(s):  
D.M. Akbar Hussain ◽  
A.A. Tabassam ◽  
M. Zafarullah Khan ◽  
Shaiq A. Haq ◽  
Zaki Ahmed

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2955 ◽  
Author(s):  
Mario de Oliveira ◽  
Andre Monteiro ◽  
Jozue Vieira Filho

Preliminaries convolutional neural network (CNN) applications have recently emerged in structural health monitoring (SHM) systems focusing mostly on vibration analysis. However, the SHM literature shows clearly that there is a lack of application regarding the combination of PZT-(lead zirconate titanate) based method and CNN. Likewise, applications using CNN along with the electromechanical impedance (EMI) technique applied to SHM systems are rare. To encourage this combination, an innovative SHM solution through the combination of the EMI-PZT and CNN is presented here. To accomplish this, the EMI signature is split into several parts followed by computing the Euclidean distances among them to form a RGB (red, green and blue) frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, encompassing a total of four types of structural conditions for each PZT. In a case study, the CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum plate. The results reveal an effective pattern classification; yielding a 100% hit rate which outperforms other SHM approaches. Furthermore, the method needs only a small dataset for training the CNN, providing several advantages for industrial applications.


2012 ◽  
Vol 516-517 ◽  
pp. 135-139
Author(s):  
Xiang Bai Hu ◽  
Guo Min Cui ◽  
Hai Zhu Xu ◽  
Jin Yang Wang

In order to overcome the difficulty of easily falling into the local minimum solution during the optimization process of heat exchanger network which is not considered fixed investment costs, an innovative method was presented. The total areas of local minimum solution were distributed equally, and then the distributed areas were assigned to initial areas for further optimization. The better local minimum solution was sought out after jumping out of local minimum solution. Through some case study, it presents that this optimization method is able to obtain better optimization results which is more suitable to industrial applications.


Robotica ◽  
2010 ◽  
Vol 29 (2) ◽  
pp. 295-315 ◽  
Author(s):  
Debanik Roy

SUMMARYCollision-free path planning for static robots is a demanding manifold of contemporary robotics research, vastly due to the growing industrial applications. In this paper, a novel ‘visibility map’-based heuristic algorithm is used to generate near-optimal safe path for a three-dimensional congested robot workspace. The final path is obtainable in terms of joint configurations, by considering the Configuration Space of the task space. The developed algorithm has been verified initially by considering representative 2D workspaces, cluttered with different obstacles with regular geometries and then after with the spatial endeavour. A case study reveals the effectiveness of the developed modules of the configuration space mapping, pertaining to a five degrees-of-freedom low payload articulated robot.


Sign in / Sign up

Export Citation Format

Share Document