Smart Technologies and Case Study for Industrial Applications and Safety

2021 ◽  
Vol 11 (9) ◽  
pp. 4121
Author(s):  
Hana Tomaskova ◽  
Erfan Babaee Tirkolaee

The purpose of this article was to demonstrate the difference between a pandemic plan’s textual prescription and its effective processing using graphical notation. Before creating a case study of the Business Process Model and Notation (BPMN) of the Czech Republic’s pandemic plan, we conducted a systematic review of the process approach in pandemic planning and a document analysis of relevant public documents. The authors emphasized the opacity of hundreds of pages of text records in an explanatory case study and demonstrated the effectiveness of the process approach in reengineering and improving the response to such a critical situation. A potential extension to the automation and involvement of SMART technologies or process optimization through process mining techniques is presented as a future research topic.


Author(s):  
D.M. Akbar Hussain ◽  
A.A. Tabassam ◽  
M. Zafarullah Khan ◽  
Shaiq A. Haq ◽  
Zaki Ahmed

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2955 ◽  
Author(s):  
Mario de Oliveira ◽  
Andre Monteiro ◽  
Jozue Vieira Filho

Preliminaries convolutional neural network (CNN) applications have recently emerged in structural health monitoring (SHM) systems focusing mostly on vibration analysis. However, the SHM literature shows clearly that there is a lack of application regarding the combination of PZT-(lead zirconate titanate) based method and CNN. Likewise, applications using CNN along with the electromechanical impedance (EMI) technique applied to SHM systems are rare. To encourage this combination, an innovative SHM solution through the combination of the EMI-PZT and CNN is presented here. To accomplish this, the EMI signature is split into several parts followed by computing the Euclidean distances among them to form a RGB (red, green and blue) frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, encompassing a total of four types of structural conditions for each PZT. In a case study, the CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum plate. The results reveal an effective pattern classification; yielding a 100% hit rate which outperforms other SHM approaches. Furthermore, the method needs only a small dataset for training the CNN, providing several advantages for industrial applications.


2019 ◽  
Vol 11 (5) ◽  
pp. 837-862 ◽  
Author(s):  
Diamantino Torres ◽  
Carina Pimentel ◽  
Susana Duarte

Purpose The purpose of this study intends to make a characterization of a shop floor management (SFM) system in the context of smart manufacturing, through smart technologies and digital shop floor (DSF) features. Design/methodology/approach To attain the paper objective, a mixed method methodology was used. In the first stage, a theoretical background was carried out, to provide a comprehensive understanding on SFM system in a smart manufacturing perspective. Next, a case study within a survey was developed. The case study was introduced to characterize a SFM system, while the survey was made to understand the level of influence of smart manufacturing technologies and of DSF features on SFM. In total, 17 experts responded to the survey. Findings Data analytics is the smart manufacturing technology that influences more the SFM system and its components and the cyber security technology does not influence it at all. The problem solving (PS) is the SFM component more influenced by the smart manufacturing technologies. Also, the use of real-time digital visualization tools is considered the most influential DSF feature for the SFM components and the data security protocols is the least influential one. The four SFM components more influenced by the DSF features are key performance indicator tracking, PS, work standardization and continuous improvement. Research limitations/implications The study was applied in one multinational company from the automotive sector. Originality/value To the best of the authors’ knowledge, this work is one of the first to try to characterize the SFM system on smart manufacturing considering smart technologies and DSF features.


2012 ◽  
Vol 516-517 ◽  
pp. 135-139
Author(s):  
Xiang Bai Hu ◽  
Guo Min Cui ◽  
Hai Zhu Xu ◽  
Jin Yang Wang

In order to overcome the difficulty of easily falling into the local minimum solution during the optimization process of heat exchanger network which is not considered fixed investment costs, an innovative method was presented. The total areas of local minimum solution were distributed equally, and then the distributed areas were assigned to initial areas for further optimization. The better local minimum solution was sought out after jumping out of local minimum solution. Through some case study, it presents that this optimization method is able to obtain better optimization results which is more suitable to industrial applications.


Robotica ◽  
2010 ◽  
Vol 29 (2) ◽  
pp. 295-315 ◽  
Author(s):  
Debanik Roy

SUMMARYCollision-free path planning for static robots is a demanding manifold of contemporary robotics research, vastly due to the growing industrial applications. In this paper, a novel ‘visibility map’-based heuristic algorithm is used to generate near-optimal safe path for a three-dimensional congested robot workspace. The final path is obtainable in terms of joint configurations, by considering the Configuration Space of the task space. The developed algorithm has been verified initially by considering representative 2D workspaces, cluttered with different obstacles with regular geometries and then after with the spatial endeavour. A case study reveals the effectiveness of the developed modules of the configuration space mapping, pertaining to a five degrees-of-freedom low payload articulated robot.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3203
Author(s):  
Andrei Blinov ◽  
Roman Kosenko ◽  
Andrii Chub ◽  
Volodymyr Ivakhno

Reliable and predictable operation of power electronics is of increasing importance due to continuously growing penetration of such systems in industrial applications. This article focuses on the fault-tolerant operation of the bidirectional secondary-modulated current-source DC–DC converter. The study analyzes possible topology reconfigurations in case an open- or short-circuit condition occurs in one of the semiconductor devices. In addition, multi-mode operation based on topology-morphing is evaluated to extend the operating range of the case study topology. The influence of post-failure modes on the functionality and performance is analyzed with a 300 W converter prototype. It is demonstrated that failure of one transistor in the current-source side can be mitigated without dramatic loss in the efficiency at maximum power, while preserving bidirectional operation capability.


Sign in / Sign up

Export Citation Format

Share Document