scholarly journals Atom Probe Study of the Miscibility Gap in CuNi Thin Films and Microstructure Development

2021 ◽  
pp. 1-11
Author(s):  
Rüya Duran ◽  
Patrick Stender ◽  
Sebastian Manuel Eich ◽  
Guido Schmitz

Abstract The unclear miscibility of CuNi alloys was investigated with atom probe tomography (APT). Multilayered thin film samples were prepared by ion beam sputtering (IBS) and focused ion beam (FIB) shaping. Long-term isothermal annealing treatments in a UHV furnace were conducted at temperatures of 573, 623, and 673 K to investigate the mixing process. The effective interdiffusion coefficient of the nanocrystalline microstructure (including defect diffusion) was determined to be Deff = 1.86 × 10−10 m2/s × exp(−164 kJ/mol/RT) by fitting periodic composition profiles through a Fourier series. In nonequilibrium states, microstructural defects like grain boundaries and precipitates were observed. While at the two higher temperatures total mixing is observed, a clear experimental evidence is found for a miscibility gap at 573 K with the boundary concentrations of 26 and 66 at%. These two compositions are used in a subregular solution model to reconstruct the phase miscibility gap. So, the critical temperature TC of the miscibility gap is found to be 608 K at a concentration of 45 at% Ni.

2021 ◽  
pp. 1-11
Author(s):  
Yoonhee Lee ◽  
Patrick Stender ◽  
Sebastian Manuel Eich ◽  
Guido Schmitz

To solve the uncertainty of the platinum (Pt)–palladium (Pd) phase diagram, especially the existence of a suggested miscibility gap, atom probe tomography (APT) was used to determine the time evolution of the composition after heat treatment. Due to the extraordinarily slow diffusion in the temperature range of the controversial phase separation, the investigated volume was limited to nano-sized multiple layers deposited by ion beam sputtering (IBS). The evaporated volume was reconstructed from the obtained datasets and the respective diffusion coefficients were determined using the Fourier series solution of the diffusion equation. Beginning with pure Pt and Pd layers annealed at 673, 773, 873, and 973 K, the mixing appears to be purely diffusion controlled in the chosen annealing times, but the state of complete mixing was still not observed. Therefore, extended isothermal annealing sequences at 673 and 773 K with pre-alloyed layers have been carried out. They clearly suggest complete mixing even at the lowest investigated temperatures.


1998 ◽  
Vol 546 ◽  
Author(s):  
D. P. Adams ◽  
G. L. Benavides ◽  
M. J. vasile

AbstractThis work combines focused ion beam sputtering and ultra-precision machining for microfabrication of metal alloys and polymers. Specifically, micro-end mills are made by Ga ion beam sputtering of a cylindrical tool shank. Using an ion energy of 20keV, the focused beam defines the tool cutting edges that have submicrometer radii of curvature. We demonstrate 25μm diameter micromilling tools having 2, 4 and 5 cutting edges. These tools fabricate fine channels, 26–28 microns wide, in 6061 aluminum, brass, and polymethyl methacrylate. Micro-tools are structurally robust and operate for more than 5 hours without fracture.


1998 ◽  
Vol 4 (S2) ◽  
pp. 492-493 ◽  
Author(s):  
M.W. Phaneuf ◽  
J. Li ◽  
T. Malis

Focused Ion Beam or FIB systems have been used in integrated circuit production for some time. The ability to combine rapid, precision focused ion beam sputtering or gas-assisted ion etching with focused ion beam deposition allows for rapid-prototyping of circuit modifications and failure analysis of defects even if they are buried deep within the chip's architecture. Inevitably, creative TEM researchers reasoned that a FIB could be used to produce site specific parallel-sided, electron transparent regions, thus bringing about the rather unique situation wherein the specimen preparation device often was worth as much as the TEM itself.More recently, FIB manufacturers have concentrated on improving the resolution and imaging characteristics of these instruments, resulting in a more general-purpose characterization tool. The Micrion 2500 FIB system used in this study is capable of 4 nm imaging resolution using either secondary electron or secondary ions, both generated by a 50 kV liquid metal gallium ion source.


2019 ◽  
Vol 61 (9) ◽  
pp. 1706
Author(s):  
П.Н. Найденов ◽  
А.Л. Чехов ◽  
О.Л. Голикова ◽  
А.В. Беспалов ◽  
А.А. Гераськин ◽  
...  

A method for the synthesis of magnetoplasmonic crystals containing two Ag gratings with the structure (Au / BIG) 2, in which the plasmon lattices of gold are displaced relative to each other by half the period, is presented. Gold films with a thickness of about 40 nm are formed by the method of ion-beam sputtering – deposition, and the adhesive properties of the film make it possible to carry out dimensional etching with a sharply focused ion beam. It was shown that the synthesis of the second plasmon lattice located above the garnet layer of 100 nm thick, preserves the periodicity of the first Au lattice, however a significant influence of the diffusion processes on the lower Au lattice is observed, which leads to a decrease in its density. The dependence of the transmission magneto-optical effect on the thickness of the upper lattice and the presence of an encapsulating Ta2O5 layer is investigated


1985 ◽  
Vol 57 (1) ◽  
pp. 159-160 ◽  
Author(s):  
H. Morimoto ◽  
Y. Sasaki ◽  
Y. Watakabe ◽  
T. Kato

Sign in / Sign up

Export Citation Format

Share Document