tool shank
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Andreas Hilligardt ◽  
Jan Klose ◽  
Michael Gerstenmeyer ◽  
Volker Schulze

AbstractGear skiving is a highly productive process for machining of internal gears which are required in large quantity for electric mobility transmissions. Due to the complex kinematics of gear skiving, collisions of the tool and workpiece can occur during the process. Models exist to check for collisions of the tool shank or collisions in the tool run-out. While these models are sufficient for the process design of external gear skiving, at internal gears meshing interferences between tool and workpiece can appear outside the contact plane on the clearance face of the tool. To test for meshing interference requires comprehensive assessment of workpiece, tool and process kinematics. Currently, this is often done by time consuming CAD-simulation. In contrast, this paper presents an automated geometrical model for the analysis of meshing interference. The test for collisions is thereby performed along the whole height of the tool and especially includes constructive clearance angles and eccentric tool positions. The model is developed for user-friendly implementation and practical applications. The model for avoiding meshing interference in gear skiving is validated on two different process applications. In doing so, influences of the tool and process design on the interference situation are investigated, compared and discussed. Furthermore this new approach enables the prevention of meshing interference or tooth tip collisions in the early tool design by adjusting the process kinematics or the tool design itself. The maximal viable tool height can be quantified and recommendations for improving the clearance face situation are suggested.


2021 ◽  
Author(s):  
Martin Schwarze ◽  
Carlo Rüger ◽  
Oliver Georgi ◽  
Hendrik Rentzsch ◽  
Holger Pätzold

Due to continuous tool engagement, turning processes tend to form long chips when machining ductile materials. These chip shapes have a negative influence on process performance and productivity. One approach to improve chip breakage is superimposition of vibrations in feed direction of the turning process, which leads to a modulation of uncut chip thickness. In a joint industrial project with Schaeffler Technologies AG & Co. KG, Fraunhofer IWU developed an oscillating actuator for turning. The actuator converts a rotational movement of a drive motor into a translational vibration via an eccentric gear. The tool shank is mounted in solid joint assemblies. With this prototypical system, a cyclic movement of the tool in feed direction can be realized. The typical operating parameters of the actuator is within the range of 1...100 Hz with adjustable vibration amplitudes up to 0.6 mm peak-to-peak. A significant improvement in chip breaking during the machining of steel 1.0503 was shown in cutting tests.


Author(s):  
Nobutoshi Ozaki ◽  
Shota Matsui ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Abstract When chatter vibrations occur during cutting, a characteristic pattern called chatter mark appears on the machined surface. In our previous studies, it was estimated that this chatter mark is formed by the tool (or workpiece) vibration in the normal direction with respect to the machined surface. We thus proposed a method to inversely analyze the chatter vibration information during cutting through the chatter mark using two-dimensional discrete Fourier transform. Previous studies confirmed that the analysis results of this method are in good agreement with those of the information obtained via conventional sensing. However, the correctness of the pattern formation mechanism is yet to be directly verified, as it is difficult to measure the cutting phenomenon directly. In this study, the chatter vibration during cutting was measured by the displacement of the tool-shank. Then, based on the results obtained in the static stiffness test, the movement of the tool edge was estimated. A cutting simulation using a voxel model was executed based on this tool-edge movement. When the simulation using the chatter vibration in the normal direction was performed, a chatter mark appeared on the simulated surface. It could thus be confirmed more directly that the analytical model is correct compared with the previous methods.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Rico Schmidt ◽  
Alfons Ams
Keyword(s):  

2020 ◽  
Vol 4 (3) ◽  
pp. 67
Author(s):  
Jonas Baumann ◽  
Andreas Wirtz ◽  
Tobias Siebrecht ◽  
Dirk Biermann

Milling processes are often limited by self-excited vibrations of the tool or workpiece, generated by the regenerative effect, especially when using long cantilevered tools or machining thin-walled workpieces. The regenerative effect arises from a periodic modulation of the uncut chip thickness within the frequencies of the eigenmodes, which results in a critical excitation in the consecutive cuts or tooth engagements. This paper presents a new approach for disturbing the regenerative effect by using milling tools which are modified with asymmetric dynamic properties. A four-fluted milling tool was modified with parallel slots in the tool shank in order to establish asymmetric dynamic characteristics or different eigenfrequencies for consecutive tooth engagements, respectively. Measurements of the frequency response functions at the tool tip showed a decrease in the eigenfrequencies as well as an increase in the dynamic compliance in the direction of the grooves. Milling experiments with a constant width of cut and constantly increasing axial depth of cut indicated a significant increase in the stability limit for the specific preparations of up to 69%.


2020 ◽  
Vol 86 (6) ◽  
pp. 468-473
Author(s):  
Toshifumi ATSUTA ◽  
Hidenori YOSHIMURA ◽  
Takashi MATSUMURA
Keyword(s):  

2020 ◽  
Vol 14 (2) ◽  
pp. 217-228
Author(s):  
Jonny Herwan ◽  
◽  
Seisuke Kano ◽  
Oleg Ryabov ◽  
Hiroyuki Sawada ◽  
...  

During the turning process, cast iron is directly shattered to become particles. This mechanism means the surface roughness cannot be predicted using the kinematic equation. This paper provides surface roughness predictions using two methods, the multiple regression model (MRM) and artificial neural network (ANN). Cutting parameters and vibration signals are considered input variables in both methods. This work also overcomes the common sensor position limitation (tool shank) and provides a safe and efficient solution. The prediction values from MRM and ANN show accurate results compared to the measured surface roughness, with the average error of less than 8%. Furthermore, the proposed sensor position, at the turret bed, also exhibits similar prediction accuracy to a sensor at the tool shank, hence promising feasible industrial application.


Author(s):  
Ahmed AD Sarhan

Tungsten carbides are extremely high in hardness and they are wear-resistant materials. However, they are extremely brittle materials that render them ideal for many applications. Brazing technology has been proved to be a promising approach for joining tungsten carbide to tough metals to create high strength, tough and impact-resistant joint in the final assembly. In this research work, a dissimilar brazing of tungsten carbide (WC-Co) and cold work steel will be achieved using a new type of filler, a silver-copper near-eutectic alloy (BAg-8T) (Ag70Cu28Ti2). (BAg-8T) as a mixed alloy (eutectic and titanium) can melt/solidify completely in a very narrow temperature range (778 °C/800 °C), lower than any other existing brazing filler alloy; this will reduce the possibility of partial fastening while solidification. In addition, (BAg-8T) filler will act as the soft-iron gauze. Being soft and ductile metals, they will creep and absorb the movement due to differential contraction of the carbide and tool shank. Besides, they will improve the wetting on the carbide. In this research work, the effect of the joining parameters (brazing temperature and cobalt percentage in the tungsten carbide) on the mechanical properties and microstructure of the brazed joint will be investigated to determine the best joint performance.


2019 ◽  
Vol 4 (1) ◽  
pp. 200-205
Author(s):  
Ádám Sarankó ◽  
Gábor Kalácska ◽  
Róbert Keresztes

In this article, we would like to introduce the problems caused by vibrations in case of polymer turning processes. Nowadays there is a lot of research in this topic, to avoid the unnecessary phenomena of vibrations. The two most common methods are the Spindle Speed Variation (SSV), and the Vibration Assisted Machining (VAM). In case of SSV, the CNC machine can increase and decrease the speed of spindle continuously during turning which can significantly reduce the effects of chatter. This method is beneficial for longer workpieces when there is not any support except the chuck. Vibration-assisted machining can be used to minimise the problems caused by vibrations. VAM combines precision machining with small-amplitude tool vibration to improve the fabrication process. It has been applied to some processes ranging from turning, drilling to grinding. Based on the enumerated above we made some trial measurements about the basic vibrations of the turning tool shank. The tests were done on an NCT EUROturn-12B CNC machine which can found in the workshop of our institute. The tested material was Polyamide 6 because this is the most commonly used polymer in the industry. In the future, we would like to test some other basic and composite polymer materials too. The equipment was served by a specialist from SPM Budapest Kft. With these tests, our goal was to make sure that the equipment and the measuring setup are suitable for our future research.


2018 ◽  
Vol 12 (3) ◽  
pp. 282-289 ◽  
Author(s):  
Jonny Herwan ◽  
◽  
Seisuke Kano ◽  
Ryabov Oleg ◽  
Hiroyuki Sawada ◽  
...  

Tool condition monitoring, such as tool wear and breakage, is an essential feature in smart manufacturing system. One of most potential sensors that can be used in tool monitoring is vibration sensor, which usually assembled at tool shank. However, in case of CNC turning with rotating tool turret, it is impossible to assemble the vibration sensor at the tool shank because wire of the sensor will be damaged when the turret rotated. This paper is addressed to compare thoroughly alternative sensor positions. Ten sensor positions including tool shank, as a reference, are investigated. The signals from three types of cutting, namely; normal cutting, abnormal cutting with tool wear and abnormal cutting when tool breakage occurred, are investigated. Based on the magnitude of the output signals and their capability to predict tool wear and breakage, a suggestion on vibration sensor positions is proposed.


Sign in / Sign up

Export Citation Format

Share Document